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Abstract—Singing voice is a key sound source in popular music.
As recent music streaming and entertainment services call for
more intelligent solutions to retrieve songs or evaluate musical
characteristics, automatic analysis of popular music targeted to
singing voice has been a significant research subject. The majority
of studies have focused on quantitative or objective information
of singing voice such as pitch, lyrics or singer identity. However,
singing voice has a wide variety of dimensions that are somewhat
difficult to quantify and therefore we often describe by words.
In this paper, we address the qualitative analysis of singing
voice as a music auto-tagging task that annotates songs with
a set of tag words. To this end, we build a music tag dataset
dedicated to singing voice. Specifically, we define a vocabulary
that describes timbre and singing styles of K-pop vocalists
and collect human annotations for individual tracks. We then
conduct statistical analysis to understand the global and temporal
characteristics of the tag words. Using the dataset, we train a deep
neural network model to automatically predict the voice-specific
tags from popular music recordings and evaluate the model in
different conditions. We discuss the results by comparing them
to the statistical analysis of tag words. Finally, we show potential
applications of the vocal tagging system in music retrieval, music
thumbnailing and singing evaluation.

Index Terms—singing voice, vocal, semantic analysis, music
tagging, convolutional neural networks, timbre, K-Pop

I. INTRODUCTION

Singing voice is one of the most essential sound sources in
music. It can deliver not only melody but also lyrics with great
emotional expressions. In popular music, the role of singing
voice is more important as the vocal quality of singers is
critical in attracting people and gaining popularity. Therefore,
a song is written often considering the vocal characteristics of
singers. In music production, vocal tracks are usually the main
focus in mixing them with accompanying instrumental tracks.
This importance has led to active research on computational
analysis of singing voice [1]. In particular, singing voice
analysis in popular music recordings has drawn much attention
as music streaming services have grown and online karaoke
services (e.g., mobile apps) have become widespread [2].

Singing voice analysis has been carried out to acquire
diverse types of information in music and utilize it for various
applications. Since the main vocal in popular music usually
accounts for melody and lyrics, extracting the pitch and
formant features of singing voice from the mixture track can
allow for obtaining the melody contours [3]–[6] or transcribing
the lyrics of the song [7], [8]. Furthermore, the melodic or
phonetic features can be used for other related tasks such
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as query-by-humming [9], singing skill evaluation [10], and
audio-to-lyrics alignment [11]. Since singing voice contains
information about the singer as well, the acoustic features
can be used for singer-oriented applications such as singer
identification [12] or music retrieval based on vocal timbre
similarity [13], [14].

While extracting the quantitative or objective information
such as melody, lyrics, and singer identity has been actively
studied so far, qualitative elements of singing voice such as
vocal timbre or singing styles have been paid less attention.
This might attribute to the difficulty of defining appropriate
measures in the qualitative analysis. One approach to tackle
the problem is using a set of words that describe the impression
of singing voice and rate the matching between the individual
words and a singing voice [15].

As for popular music, this word-based music analysis has
been handled in the context of music auto-tagging, which has
been a widely explored topic in the area of music informa-
tion retrieval (MIR) [16]–[18]. However, the majority of tag
vocabulary in existing music tag datasets account for general
song characteristics such as genre or mood, not sufficiently
covering attributes on singing voice. This poses a new setup
for qualitative analysis of singing voice in popular music
recordings, that is, music auto-tagging that focuses on vocal-
specific tags.

In this regard, this paper presents a comprehensive study on
semantic tagging of singing voice. We first introduce a new
music tag dataset dedicated to singing voice that contains up
to 70 vocal tags and human annotations for 466 K-pop music
tracks. The human annotations include not only track-level
but also segment-level, considering that timbre and expres-
sions of singing voice can dynamically change over different
sections within a track (e.g., verse or chorus) [19], [20]. For
the segment-level annotation, we searched vocal segments
in the music tracks using a voice detection algorithm and
obtained 6,787 10-second-long vocal segments. In addition, we
assigned three human annotators to each segment, considering
the subjective nature of tag words. We term this as the K-
pop Vocal Tag (KVT) dataset. Using the KVT dataset, we
conducted two primary studies. One is statistical analysis
of the human annotations in terms of frequency, agreement,
temporal dynamics and correlation of the vocal tags. This will
provide an understanding of characteristics of the vocal tag
words. The other is auto-tagging of singing voice by training
a deep neural network in a supervised setting using the KVT
dataset. We train and evaluate the model with both track-level
and segment-level annotations, and also cross-test it with the
two different levels of annotations to investigate the effect
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of segment-level annotations. We also attempt to use isolated
vocal tracks as input to compare that against the original mixed
tracks as input. Furthermore, we compare the prediction results
to the statistical analysis of human annotations to interpret the
prediction results. Finally, we discuss potential applications of
the qualitative singing analysis including vocal-oriented music
retrieval, highlight detection and singing evaluation. To the
best of our knowledge, this is the first research on music auto-
tagging focusing on singing voice in popular music recordings.

This paper is organized as follows. Section II reviews
previous work related to characterizing singing voice using
words. Section III describes the detail of constructing the
vocal tag dataset. Section IV analyzes the human annotations
using various statistical measures. Section V handles automatic
music tagging using a convolutional neural network and the
dataset. Section VI suggests potential applications of this
research. The conclusion section wraps up the discussion and
outlines future work.

II. RELATED WORK

Singing voice can be explained in terms of pitch, loudness
and timbre as a sound source [2]. While pitch and loudness
are measurable features as a single continuum, timbre is a
multi-dimensional concept that has different levels of abstrac-
tions [22]. Thus, instead of quantitative measures, researchers
attempted to explain it using verbal attributes to capture
the perceptual nuance. For example, Lichte [23] used pairs
of words with opposite meanings such as “bright/dull” or
“thin/full” as a scale of timbre space. Von Bismarck [24]
investigated orthogonal sets of word pairs based on a factor
analysis of human ratings.

As for singing voice, this qualitative analysis has mainly
focused on performance expressions [15], [25], [26]. For
example, Scherer et al. [26] studied the acoustic correlates of
emotional expressions in opera singing using “anger”, “fear”,
“tender”, “joy”, “sad” and “pride” as representative words of
different emotions. They conducted a multivariate analysis
of variance to examine the effects of the emotion targets
on various acoustic features and also a multiple discriminant
analysis to confirm the reliability of the acoustic patterns.
Kanato et al. [15] investigated more generalized descriptions of
singing styles using words extracted from various documents.
They collected human ratings of the words on a 7-point scale
for recordings from singers and conducted factor analysis on
the scale data. They showed that three words, “powerful”,
“cautious” and “cheerful” can be used as basis factors that
can explain other words such as “joyful”, “lightly”, “weak”
and “clear”. Also, they conducted multiple regression to find
how the factor words are related to acoustic features. While
these studies provide meaningful methods to define words and
associate them with the acoustic features of singing voice,
the audio data were recorded in a highly controlled setting
to focus on the performance aspect of singing voice. Specif-
ically, the audio data were recorded as monaural solo vocal
without any instrumental background. They even marginalized
the emotional effect from song itself by using an original
composition unknown to singers or non-melodic notes (e.g.,

music scales). While these controlled settings can provide
scientifically rigorous analysis on the effect of singing voice,
they are not applicable to commercial popular tracks. Also,
they did not explicitly deal with timbral traits of individual
singers.

In this study, we aim to analyze singing voice in popular
music recordings where professional vocals are accompanied
by background instrumental tracks. In order to collect the
vocal description data, we obtained highly vocal-specific tags
and guided the annotators to focus on singing voice. We
also asked them to make a binary decision for each tag to
mitigate the annotation efforts. This is in fact the same setup
in music auto-tagging tasks. While general music auto-tagging
datasets include a highly broad scope of words including
genre, mood, instruments or other attributes, our dataset is
specialized to singing voice. Some existing music tag datasets
actually contain some vocal tags but they are not sufficient
to cover the diverse aspects of singing voice [16], [17], [21].
Table I compares vocal tags from popularly used music tagging
datasets to those in the proposed KVT dataset. The table evi-
dently shows that our proposed dataset provides much richer
tags that describe singing voice (note that the KVT dataset
focuses on solo singers and so it is empty in the ensemble
type category). We will explain the detail of collecting the
data in the next section.

III. DATA COLLECTION

This section presents the design process of collecting the
vocal tag vocabulary and human annotations of popular music
recordings.

A. Tag Vocabulary and Audio Data

The most essential step in creating the tag dataset is defining
a tag vocabulary that precisely describes diverse attributes of
singing voice. In general, a tag vocabulary can be collected
in several different ways including expert curation [16], [27],
web document mining [28] or tag collection from social
communities [21]. Our approach is based on mining web
documents, specifically, taking advantage of a website that
provides expert-level reviews of vocalists by professional vocal
trainers.1 The website contains highly detailed analysis of K-
pop vocal singers in terms of timbre, vocal techniques and
pitch range and it also allows the page viewers to freely
discuss the analysis (some popular posts have more than 1,000
responses).

We first collected a large set of words from the website via
web-crawling and extracted about 300 tag words associated
with singing voice. After filtering out inappropriate words
manually, we downsized them to 70 tags. They are listed in
Table I. Note that, since we focus on vocal characteristics
for solo vocals, we did not include any tag of ensemble
voices. In order to collect songs, we first extracted a list
of 114 K-pop singers from the website and selected 4 or 5
audio tracks per singer based on song popularity. We filtered
out songs with duet, chorus singers or rap. As a result, we

1http://kpopvocalanalysis.net
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TABLE I
A COMPARISON OF VOCAL TAG VOCABULARY IN VARIOUS DATASETS. IN KVT, TAGS USED IN SEGMENT-LEVEL ANNOTATION ARE IN BOLD. OTHER TAGS

ARE USED IN TRACK-LEVEL ANNOTATIONS ONLY. IN LAST.FM, TAGS WITH MORE THAN 200 ANNOTATIONS ARE LISTED.

Category KVT Magnatagatune [17] CAL500 [16] Last.fm [21]

Range
Low-range, Mid-range, High-range
Baritone-like, Bassier, Mezzo-Soprano
Tenor, Low

High-pitched
Low-pitched

Timbre
(low-level)

Husky/Throaty, Thick, Thin
Warm, Bright, Clear, Relaxed
Dark, Energetic, Mild/Soft
Sharp, Rich, Rounded, Stable, Breathy
Growling, Muffled, Fierce,
Piercing, Screamed, Husky, Throaty
Quiet, Hush, Smooth, Airy

AlteredwithEffects
Gravelly
Screaming
Strong

Cry, Scream
Chilled vocal

Timbre
(high-level)

Lonely, Sad, Passion, Charismatic
Pretty, Cute, Delicate, Emotional
Pure, Robotic/Artificial, Embellishing
Sweet, Young, Compressed, Dynamic
Classically, Grace, Boyish, Aged,
Exaggerated, Teen,
Creamy, Soulful, Powerful, Delicate
Consistensy, Comfortable

Aggressive
Emotional

Beautiful voice
Sexy female vocals
A dynamic male vocalist
An emotional male lead vocal
performance

Gender Male, Female Male, Female Female Lead Vocals
Male Lead Vocals Female, Male

Genre Soulful/R&B, Ballad
Male Opera
Female Opera
Chant

Jazz Vocal

Technique
Whisper/Quiet, Shouty, Vibrato
Falsetto, Speech-like
Non-breathy

Talking
Breathy, Falsetto
Monotone
Rapping, Spoken

Ensemble type Choir, Duet
Call&Response, Duet
Vocal Harmonies
Backing vocals

Vocal Harmony, Singalong
Duet, Choir

acquired 466 songs. The audio tracks include not only vocals
but also instrumental sounds. Although we could separate
out instrumental sounds from the mixed audio for annotators
to focus on singing voice, we decided to use the original
mixed tracks and so let the human annotators separate out the
vocal audio via their hearing system for two reasons. First,
isolated vocals from the mixed audio sound quite unnatural.
Singers perform the song while listening to the instrumental
sound in the background and thus vocals are affected by
the instrumental sound. In addition, mixing engineers process
the vocal and instrumental tracks to be cohesively mixed
using various audio effects. This is, the mixed audio track
is not simply the sum of vocal and background music. This
makes the isolated vocal sounds unfamiliar and even awkward.
Second, although current singing vocal separation algorithms
have made significant advances [29], [30], they still have
audible artifacts or contain background vocals or chorus as
they separate the sources in stem-level. Thus, we decided
that using the separated vocals are not appropriate for human
annotation.

B. Human Annotation
Human annotation data for music tracks can be also col-

lected from various resources or strategies [31]. For example,
they include conducting a survey [16], [27], harvesting social
tags [21], playing annotation games [17], [32] and mining web
documents [28]. Since we extracted the tag vocabulary from
the vocal analysis website, we could exploit it again to collect
the tag annotation for songs from the same web documents.
However, the reviewers do not necessarily check the entire tag

vocabulary that we defined and thus the annotation can include
a significant amount of false negatives. Also, they often use
the words to describe general characteristics of singers without
being conditioned on a specific song. Therefore, we collected
human annotations through a separate survey, using the tag
vocabulary and audio data.

We conducted the survey in two steps. The first step is track-
level annotation for every tag based on the overall impression
after listening to a single piece of music tracks. This track-
level strong labeling is the approach in the CAL500 dataset
[16] and the Music Genome Project [27]. While this track-level
annotation provides a succinct summary of tag annotations
per song, it ignores the time-varying nature of vocal tags
according to music structure in a song. For example, “High-
range” and “Shouty” voices usually appear in the chorus part
or the climax of a song. Annotators may become confused
with whether these locally active tags should be positive or
not in the track-level annotation. To address the temporal
inconsistency of vocal tags within a song, in the second
step, we conducted segment-level annotation on short vocal
segments. This segment-level annotation was the approach in
the CAL500exp dataset [20]. The following subsections will
explain the two-step human annotations in detail.

C. Track-level Annotation

We collected track-level annotations from a small group of
semi-experts (5 participants). They are graduate students who
have educational backgrounds in music technology. They are
also either amateur or professional musicians. They annotated
each song with either ‘1’ (positive) or ‘0’ (negative), listening
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Fig. 1. A screenshot of the crowd-sourcing system for segment-level annota-
tion of vocal tags. The left panel shows the melody contour of singing voice
and the right side lists on/off buttons for each tag. The initial states of tags
are determined by the track-level annotation that the segment belongs to.

to individual music tracks as many times as they want. They
were guided to annotate the song with positive when they are
confident with the matching between the tag and the song.
Otherwise, they annotated it with negative. Each song was
annotated by 3 different participants.

After collecting the track-level annotation data, we inves-
tigated the frequency, ambiguity and redundancy of tags as
presented in our preliminary study [33]. We measured the
frequency by counting the number of annotations per tag. The
results showed that some tags such as “Bassier”, “Baritone-
like” and “Grace” are rarely used, indicating that there are
few vocals with the characteristics or annotators are uncertain
about them. We also measured tag ambiguity by examining
the agreement from different annotators. While “Male” and
“Female” have high agreement in general, “Throaty” and
“Vibrant” have very low one. Lastly, we measured the redun-
dancy by carrying out hierarchical clustering on the tag-to-tag
similarity matrix. Specifically, we computed tag-to-tag cosine
distance where each tag vector is binary annotations of a song
and used a single linkage method for hierarchical clustering.
A plot of the clustering result is shown in our previous work
[33]. The results showed that tag pairs such as “Mild-Soft”
or “Airy-Breathy” are highly close to each other. We refined
the tag words by merging such redundant tags or removing
tags with too low activation. As a result, we downsized the
tag vocabulary to 42 tags. They are shown in bold in Table I.

D. Segment-level Annotation

Segment-level annotation is labeling short vocal segments
within a track. This involves detecting singing voice in the
mixed tracks and cutting them off with an appropriate length.
To this end, we used a singing voice detector based on
CNN [34]. We trained it using datasets with vocal detection
labels (RWC [35] and Jamendo [36]) and ensured that the
voice detector generally works well for the K-pop songs by
inspecting the detected results on a randomly selected subset.
Using the pre-trained CNN, we computed the confidence levels
of the detector over a segment window. Whenever the average
likelihood level within the window is above 80%, we took

the segment window and slided it such that the next segment
has no overlap with the current one. In our preliminary test,
we tried different lengths of segments. When the segment was
shorter, the tags were likely to be more consistent within the
segment but it became more difficult to confirm the matching
between tags and the segment. When the segment was longer,
on the other hand, the result was opposite. We found that 10
second is appropriate in the test. This resulted in 6,787 vocal
segments out of the 466 music tracks.

Using the vocal segments and the downsized tag vocabulary,
we conducted segment-level annotation. Considering that the
number of audio examples is much larger in segment-level,
we crowd-sourced the annotation survey. To this end, we built
a web-based system as shown in Figure 1. The user interface
includes two panels. The left one shows the pitch contour of
singing voice extracted using a melody extraction algorithm
based on deep neural networks [6]. This pitch contour visually
helped annotators track and focus on vocal sounds. The right
one lists the tag vocabulary and their binary status. Also,
Korean translations and tagging instructions are provided on
the page. Following the method in [20], the initial decisions
of tags were set by the track-level annotation where the
segment belongs to. The participants were guided to change
the decisions only when they do not agree with the initial
decisions. This significantly mitigated the annotation efforts,
compared to annotating them from scratch. Each participant
annotated from 50 to 300 randomly assigned segments and
each segment was annotated by 3 different participants. The
total number of participants was 82 and most of them are
undergraduate and graduate students of KAIST who have high-
level English proficiency.

The system tracked the activity of annotators including the
elapsed time after audio loaded for every annotation session,
time-stamps of detailed events such as audio loading and tag
annotation. This information was used to verify the integrity
of annotators. Annotators are marked invalid if: a) the user
has less than 50 annotation sessions, b) median elapsed time
is less than 15 seconds, c) number of annotation sessions with
less than 10 seconds taken is too large (about 10 percents).
All annotations from invalid annotators are not included in
the dataset as well as the statistic analysis. The median of
elapsed time was 35.22 seconds and the mean of tag insertion
and deletion actions from the initial states was 7.5. The ratio of
operations given 42 tags (0.178 = 7.5/42) is slightly greater
than that in the CAL500exp dataset which reported the average
operation of 9.18 given 67 tags (0.137 = 9.18/67) [20].

IV. STATISTICAL ANALYSIS

This section reports statistical analysis of the tag vocabu-
lary focusing on the segment-level annotation data. We first
define symbolic expressions for the annotation data, and then
investigate frequency and agreement as global characteristics,
temporal activations and intra/inter-song frequency as within-
song characteristics, and similarity between tags.

A. Annotation Data Definitions
For annotator a, tag t and segment s, we define the

annotation record as ra,t,s, the number of positive annotations
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Fig. 2. Frequency distribution and agreement of tags. n-frequency is the ratio
of segments that a tag is annotated as positive at least n times (n = 1, 2 or
3) out of three annotators (a). Krippendorff’s alpha is used to calculate the
agreement among annotators (b).

as pt,s, and the binary activation as bt,s as below:

ra,t,s =

{
1 if positive
0 if negative

(1a)

pt,s =
∑

a=1,2,3

ra,t,s (1b)

bt,s =

{
1 if pt,s ≥ 2

0 if pt,s < 2
(1c)

Note that, since we assigned three different annotators to each
audio segment, pt,s ranges from 0 to 3.

B. Global Characteristics

1) n-frequency: The frequency distribution of tag annota-
tions across the entire audio segments is straightforward but
an important measure that can deliver insight to understand
general characteristics of the tags and the dataset. In our
preliminary work, we called the relative distribution of positive
annotation simply “frequency” [33]. Here we change the name
to n-frequency and formally define it as below:

Ft,n =
|{pt,s | pt,s ≥ n}|

N
, (2)

where N is the total number of audio segments and the nu-
merator is the total number of audio segments whose positive
annotations are greater than or equal to n ∈ {1, 2, 3}.

Figure 2 (a) shows the distributions of n-frequency using
the segment-level human annotation data. We sorted the tag
words in ascending order of Ft,2. Note that Ft,2 is equivalent
to the average of bt,s as a binary random variable, as it

represents how likely the tag is positive given the audio seg-
ment. Compared to other strongly-labelled music tag datasets
such as CAL500 [16] or CAL500exp [20], the median of
Ft,2 is somewhat high, which is about 0.5. This is probably
because the vocal-specific tags are less exclusive to each other
than those in the general music tag datasets where genre
and mood categories often entail one out of many choices.
Also, compared to the track-level tag annotations in our
preliminary work [33], the segment-level tag annotations have
more positive labels, that is, higher Ft,2 values. This means
that the human annotators tend to change the annotations more
from negative to positive than from positive to negative in
the crowd-sourcing annotation system (note that we initialized
the tags with track-level annotations as explained in Section
III-D), as the segment-level audio makes them focus on the
local characteristics.

This distribution of n-frequency also reflects general char-
acteristics of the vocals in the dataset. For example, the top
tags in F2 including “Breathy”, “Mid-range”, “Stable” and
“Emotional” can be considered as common vocal character-
istics of the K-pop singers. Another notable result is that
there is quite significant disagreement among annotators as
indicated by the light and dark gray bar in Figure 2 (a). This
is expected due to the subjective nature of the vocal tags, many
of which are associated with high-level impression in timbre.
To better understand the subjectivity of vocal tags, we examine
the human annotation data further in the following subsection.

2) Agreement: When multiple annotators participate in
annotation, agreement is an important measure to validate the
dataset. Annotators may be more subjective with the KVT
dataset since interpretation of semantic tags and effect of
background music can vary for each individual. Agreement
among human annotators has been studied in many MIR tasks
such as music genre classification [37], [38], music emotion
recognition [39], [40], audio music similarity [41] and chord
recognition [42]. They quantified the degree of coincidence
among human annotators, which is often referred to as inter-
annotator agreement (or inter-rater reliability), using different
types of statistical measures. Among others, Krippendorff’s
alpha has been a frequent choice as it is applicable to any
number of annotators, partial annotations (missing or unequal
samples per annotator) and various types of data [39], [40],
[42], [43]. This versatility fits well on the crowd-sourced
annotations in the KVT dataset where raters and ratings are
fragmented and irregular. If a tag has a high probability (F2-
frequency), the expected agreement of tags will also be high.
Thus, Krippendorff’s alpha calculates the amount of agreement
against chances with the same distribution, that is, by dividing
the observed agreement by the likelihood [44]. Therefore, if
a tag has a high value of F2 frequency, it is expected to
have an even higher agreement to maintain the same value
of Krippendorff’s alpha. The range is on a scale from 0 (no
agreement) to 1 (full agreement). Values between 0.4 and 0.75
are considered as a fair agreement beyond chances [42].

Figure 2(b) shows the calculated Krippendorff’s alpha on
each vocal tag in the KVT dataset. As expected, F2-frequency
and Krippendorff’s alpha are not strongly correlated to each
other. “Male” and “Female” have the highest values, which



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 3. Temporal probability distribution of tags.

are above 0.9. This is expected as they are easy to recognize.
All other tags have much lower values but the majority are
in the fair agreement range (between 0.4 and 0.75). About 7
tags are below the fair agreement. We can also observe that
tags with high n-frequency such as “Breathy”, “Mid-range”,
“Stable” and “Mild/Soft” has relatively low Krippendorff’s
alpha values. This is because Krippendorff’s alpha, by defi-
nition, cancels the effect of the tag frequency. “Compressed”,
“Rounded” and “Speech-Like” might be because the meanings
are more ambiguous than the others. However, the majority of
them are marginally less than 0.4. Overall, the Krippendorff’s
alpha values are similar to or greater than results reported
on emotion recognition (0.54 and 0.55 in [39] and 0.360 and
0.222 in [40]).

C. Within-Song Characteristics

1) Temporal Activations: Vocal timbre and expressions can
vary from one section to another section within a song. The
segment-level annotation allows for analyzing the time-varying
characteristics of tags. A simple way of observing the temporal
characteristics of vocal tags is calculating the distribution of
tag activations over time within a song. Figure 3 shows the
temporal activation of tags. Since every song has a different
length, we normalized the duration of song by resampling
the binary sequence of tag activations, bs,t, to have the same
number of elements and averaging the activations across all
songs. Also, we sorted the tags in the descending order of
temporal centroid of average activations, which is defined as∑

n n ·at,n/
∑

n at,n where n is the resampled time index and
at,n is the average of the binary activations across songs for tag
t. This allows to easily observe the trend of tag appearance by
the temporal location within a song. For example, tags in the
top rows such as “Shouty”, “High-range” and “Energetic” have
strong activations at the end of songs, confirming the common
song arrangement that the last part is the climax that contains

Fig. 4. Intra-song frequency vs. inter-song frequency.

powerful and highly tense voices. On the other hand, tags
in the bottom rows such as “Whisper/Quite”, “Low-Range”
and “Speech-Like” have strong activations at the beginning of
songs. This also explains general characteristics of verse part
in popular songs. The rest of tags in the middle have some
degree of fluctuations but they tend to be consistent over time.

2) Intra-Song Frequency and Inter-Song Frequency: Al-
though the temporal activations show general trends of tag
appearance over time, the averaging across songs dilutes how
frequently a tag is activated within each song. In order to
measure the degree of tag activation within a song, we define
intra-song frequency as below:

Dt,i =
∑
j

bt,i,s/Ni (3a)

Dt =

∑
i Dt,i

| {i | Dt,i > 0} |
(3b)

where bt,i,s is the tag binary activation for tag t, song i and
segment s in the song i, and Ni is the number of segments in
the song. This calculates, when a tag is activated at least once
in a song, how much the tag is activated over all segments
in the song. This measures the locality of the tag activations
within a song. In order to observe intra-song frequency in a
contrasting view, we also define Inter-song frequency:

It =
|{i | Dt,i > 0}|

N
(4)

This measures the locality of the tag activation across songs,
that is, if the tag appears only in a few songs or more
commonly over many songs.

We calculated the intra-song frequency and inter-song fre-
quency values for each tag and plotted them in Figure 4. The
frequency measures are generally correlated to n-frequency.
However, their relative ratio explain locality characteristics of
tags. For example, “High-range” and “Speech-Like”, “Whis-
per/Quiet” and “Shouty” have low intra-song frequency and
high inter-song frequency. This makes sense because the
tag characteristics are typical in pop music but they usually
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Fig. 5. Case study examples of tag activation patterns that compare two artists.

Fig. 6. Tag-to-tag distance. Dark cells mean close distance.

appear in a specific part in the song. That is, they tend
to explain singing techniques related to song arrangement
rather than characteristics of individual singer. On the other
hand, “Lonely”, “Ballad”, “Warm” and “Sad” have relatively
high intra-song frequency compared to inter-song frequency.
They are mainly associated with mood of vocal sound, which
are usually consistent within a song. That is, they tend to
explain characteristics of individual singer for a song. “Male”
and “Female” are extreme cases. That is, they are obviously
consistent within a song and thus they have very high intra-
song frequency but about half inter-song frequency.

D. Tag Similarity

Co-occurrence between tags is common in music tagging
because they intrinsically share some (hidden) factors [15],
[45], [46]. We investigate the similarity of vocal tags using
the segment-level annotation data. We first formed a segment-
by-tag matrix with the number of positive annotations pt,s and
obtained the tag-by-tag correlation matrix by computing cosine
similarity distances between each pair of tag-wise vector in the
segment-by-tag matrix. Figure 6 shows the distances between
all tag pairs as a matrix. We applied a hierarchical clustering
algorithm [47] to effectively visualize cluster groups on the
similarity matrix. It shows a couple of distinctive clusters.
For examples, “Sharp”, “Bright”, “High-Range”, “Pretty” and
“Female” forms a cluster in the upper part. They are seen
to explain common characteristics of female K-pop singers.
“Passion”, “Energetic”, and “Dynamic” in the middle seem to
be closer together because they are similar words. Some pairs
such as “Young” and “Clear”, “Sad” and “Lonely”, “Pretty”
and “Cute” also appear quite commonly. While many vocal
tags co-occur and contain some degree of redundancy, they
have subtle differences in meaning and some of them elaborate
other tags. Thus, the use of multiple tags can strengthen the
specificity of vocal description.

E. Case Study of Tag Annotations in Artist Level

Previous sections focused on characteristics of tag itself.
Here we shift the perspective to singers who are the target of
the tags. We can represent the vocal characteristics of a singer
by summarizing the tag annotations of all songs that belong
to the singer. Since we have more than 100 singers in the
dataset, we selected two representatives, Naul and Sohyang,
as examples of the singer-level tag analysis. Naul is a male
R&B singer and Sohyang is a female Gospel singer. They are
well-known for love songs, proficiency in singing skill and
emotional expressions. Figure 5 shows the mean and standard
deviation of tag annotations of the two singers. Both of them
commonly have high positive annotations of “Emotional”,
“Soulful/R&B”, “Delicate”, “Stable” and “Ballad”. These are
expected results considering the music genre and their singing
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style and skill. Differences are found in many tags includ-
ing “Clear”, “Whisper/Quiet”, “Embellishing”, “Young” and
“Speech-like”. We plotted the standard deviation of tag anno-
tations as a complementary measure. The standard deviation
indicates consistency of the tag for a singer. For example,
Sohyang has very high average but low standard deviation
in “Rich”, “Embellishing” and “Vibrato”, indicating that she
tends to maintain the singing style in her songs. This is
contrasted to the activations with high variations on the same
tags in Naul, indicating that he tends to dynamically change
the singing style in different segments of his songs.

V. AUTO-TAGGING

This section presents music auto-tagging experiments using
the KVT dataset and a CNN-based classifier. We use the binary
activation bs,t as ground truth for the output label. Due to
the disagreement among human annotators, the labels may be
noisy and this can hinder the training. However, this noisiness
in label is commonly found in music tag datasets, particularly
when the tags are based on “folksonomy” and weakly labelled
[46]. Nonetheless, they can be used to effectively train a neural
network or learn meaningful audio embedding via the deep
representation learning [46], [48].

We conduct three different experiments to identify the
characteristics of the vocal tags. In the first experiment, we
evaluate the performance of the auto-tagging model when
track-level annotations or segment-level annotations are used
both in training and testing sets or the different levels of
annotations are used between training and testing sets. By
comparing the results with label settings, we will show that
the segment-level annotations are essential for vocal tagging.
In the second experiment, we examine correlations between
the performance and the agreement among human annotators.
This will show how auto-tagging accuracy is related to the
annotation agreement for each tag. In the third experiment, we
separate out the vocal sound from mixed songs and perform
auto-tagging on the isolated vocal sound. This will show how
the voice-specific model is affected when the background
music is suppressed.

A. Model

Recently, deep neural networks have been used as a standard
model for music classification and auto-tagging with audio
data. They can be roughly categorized into three models: 1-
D CNN, 2-D CNN, and SampleCNN, depending on model
flexibility [18]. 1-D and 2-D CNN models use spectrogram-
based representation for their input, hence the models learn
features from the time-frequency representation of audio data.
On the other hand, SampleCNN uses raw wave as input to
provide more flexibility and learn more fine-grained filter
banks while it requires a substantial amount of data for
training. We adopted a spectrogram-based model in this work.
Our preliminary experiment showed that 2-D CNN models
generally outperform 1-D CNN models. Thus we focused on
2-D CNN models and chose a so-called VGG-like model with
a filter size of 3×3 [49]. The model configuration is shown in
Table II.

TABLE II
MODEL DETAIL. UPPER ROW OF EACH CELL SHOWS TYPE, KERNEL SIZE,
STRIDE SIZE, AND PADDING(OPTIONAL) OF THE LAYER. LOWER ROW IS

DIMENSION OF OUTPUT OF THE LAYER.

Input(128, 107, 1)

Conv., (3, 3, 32), 1
(126, 105, 32)

Max pool, (3, 3, 1), 3
(42, 35, 32)

Conv., (3, 3, 64), 1, padded
(42, 35, 64)

Max pool, (3, 3, 1), 3
(14, 12, 64)

Conv., (3, 3, 128), 1, padded
(14, 12, 128)

Max pool, (3, 3, 1), 3
(5, 4, 128)

Fully connected, (42)

B. Experimental Settings

The detailed experimental settings are as follows. We di-
vided the KST data into 298, 70, and 100 songs for training,
validation and test splits. They correspond to 4399, 1013 and
1375 segments, respectively. We split the songs for each split
to have the same frequency distribution of tags approximately.
Each song segment is 10 second long and sampled at 22,050
Hz. We used log mel-spectrogram as input of the CNN
model. We first computed Short-time Fourier Transform with
1024 samples of Hanning window, 512 samples of hop size.
We then converted the frequency scale to 128 mel bins,
and compressed the magnitude compression with a nonlinear
curve, log(1+C|A|) where A is the magnitude and C is set to
10. This returns 431 frames of mel-spectrogram per segment.

This was divided further into four sub-segments to use each
of them (107 frames ≈ 2.48 sec) as the input of the CNN
model (the labels are copied from the segment annotation).
Once the model was trained, we made a tag prediction by
averaging the model outputs over the 10-second-long segment.
This segmentation strategy is widely adopted for the music
auto-tagging task [18]. We used the Keras library to implement
the model and train it with an SGD optimizer with learning
rate 0.01 and batch size 25. To calculate F-score, we tested
thresholds between 0 and 1 with a resolution of 0.01 and chose
the one that achieves the maximum F-score for each tag.

For the experiment with separated vocals, we used a pre-
trained Wave-U-net model [29], a state-of-the-art algorithm
that separates mixed tracks into foreground (vocal) and back-
ground (other instruments) audio in the waveform domain. For
this experiment, we trained and tested the model with segment-
level annotation only. Other components of the experiment
remain unchanged for comparison.

C. Results and Discussion

1) Track-Level and Segment-Level Annotations: Table III
shows performance scores of the models. They are average
values of AUC and F-score across all vocal tags. Both of
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TABLE III
ANNOTATION AND RETRIEVAL RESULTS WITH SEGMENT-LEVEL TAG

ANNOTATIONS AND TRACK-LEVEL TAG ANNOTATIONS. ALL REPORTED
METRICS ARE AVERAGED ACROSS 10 TRAINING RUNS OF THE CNN

MODELS WITH DIFFERENT INITIALIZATIONS.

Training Label Test Label AUC F-score Precision Recall
Segment Segment 0.7352 0.7385 0.6495 0.8144

Track Segment 0.7099 0.7237 0.6281 0.8836
Segment Track 0.7282 0.5256 0.4260 0.6633

Track Track 0.7192 0.5207 0.4312 0.7409

Fig. 7. A 2D plot of F-score drop and intra-song frequency when the labels
changes from segments-level to track-level in both training and test sets.
Except a few outliers, they are loosely inversely proportional to each other;
The Pearson correlation coefficient value is -0.35 with a p value of 0.02.

them are higher when segment-level labels are used for
training. This indicates the effectiveness of segment-level tag
annotations. It is notable that, when track-level label is used
for testing, the F-score values significantly drop (about 0.2)
whereas the AUC values remain almost unchanged. This is
mainly because F-score is attenuated by the data imbalance
whereas ROC is not much affected by that [50]. As stated in
Section IV-B1, the track-level labels have higher skew values
(the negative-to-positive ratio) for each tag than segment-level
labels. Since the difference of data imbalance is related to
the locality of tags within a song, we investigate the F-score
further by plotting the performance drop against intra-song
frequency for each tag in Figure 7. It shows that vocal tags
with low intra-song frequency (more local) such as “High-
Range”, “Dark”, “Speech-like” and “Low-Range” have high
drops of F-score, whereas vocal tags with high intra-song
frequency (more insistent) such as “Male”, “Female”, “Ballad”
have small changes. “Compressed” and “Vibrato” have higher
differences of F-scores than other tags with similar intra-song
frequency. These tags can be said to be more sensitive to
locality that become less predictable with track-level labels.
“Thick” and “Robotic/Artificial” are the opposite cases. In
summary, when segment-level annotations are used in both
training and test sets, we achieve the best results. This supports
the time-varying nature of vocal tags.

2) Agreement Analysis: While the segment-level annota-
tions make improvement, the absolute level of AUC score,

Fig. 8. A 2D plot of AUC and Krippendorff’s alpha. The Pearson correlation
coefficient value is 0.7278 with a p value of 4.7e-8.

which is about 0.735, is significantly lower than those reported
in other music auto-tagging studies [18]. Although there will
be many possible reasons for this, we assume that the ambigu-
ity of vocal tags is an important factor and thus we investigate
it, associating the performance with tag annotation agreement.
In Section IV-B2, we measured the annotation agreement
among different human annotators using Krippendorff’s alpha.
Figure 8 plots the AUC scores and the alpha values for each
tag. The plot shows a strong positive relationship between
them, as indicated by the Pearson correlation coefficient value
of 0.7278. This is expected because the agreement measure
contains potential noisiness and it is reflected on the trained
model. A notable result is that some tags such as “Breathy”,
“Compressed” and “Stable” appear frequently (high values of
n-frequency) but they have low performance (low values of
AUC). This shows strong influence of the low agreement.

3) Isolated Vocal Input: Table IV compares the perfor-
mance scores when the input audio is mixed (without any
modification), vocal only and background music only in the
auto-tagging system. The results show that the model trained
with the separated vocal has better performance than the one
with mixed audio, while the model trained with background
music becomes relatively worse. This ensures that the tags
are targeted to vocal sources in the song, in other words,
human annotators pay more attention to the vocal in the
mix. We examine the difference further by looking into the
performance deviation for each tag. Figure 9 shows the AUC
score ratio between the model with vocal and the model with
background music for each tag. Tags with higher ratios are
associated with singing technique (“Falsetto”, “Breathy” and
“Vibrato”) or voice tone (“Clear”, “Pretty”, and “Young”).
These tags are usually used to describe voice, not appropriate
for background music. Therefore, they benefited more when
the isolated vocal is used as input. Moreover, “Falsetto”,
“Breathy” and “Vibrato” have lower AUC scores with the
mixed audio as seen in Figure 7. This implies that vocal
features relevant to these tags are more likely to be shadowed
by background music. On the other hand, we observe that
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TABLE IV
PERFORMANCE COMPARISON WITH ISOLATED VOCAL AND BACKGROUND

MUSIC. SEGMENT-LEVEL ANNOTATIONS ARE USED IN BOTH TRAINING
AND TEST SETS. ALL REPORTED METRICS ARE AVERAGED ACROSS 10

TRAINING RUNS OF THE CNN MODEL WITH A DIFFERENT RANDOM
INITIALIZATION.

Audio AUC F score Precision Recall
Mix 0.7352 0.7385 0.6495 0.8144

Vocal 0.7491 0.7422 0.6606 0.8074
Background 0.7119 0.7259 0.6268 0.8229

Fig. 9. Each tag’s (relative) difference of AUC scores from vocal audio and
background audio. Tags with the larger difference are the more independent
to background music. Values below one mean the tags scored better in
background audio.

tags associated with mood or overall impression (“Lonely”,
“Emotional”, “Bright” and “Sad”) have lower score ratios.
This is because the words can explain not only voice but also
background music.

This experiment shows that using the isolated vocal as
input generally improves the model performance, and the
extent depends on how exclusively the tag explains voice.
However, the performance discrepancy is not sufficiently large.
We conjecture there are several reasons for this result. First,
the source separation algorithm that we used cannot perfectly
divide the vocal and background music. When we listened
to the separated background music, we were able to perceive
some residuals of vocals. Second, vocals and accompaniment
sound actually have some degree of correlation in general. For
example, R&B music has a typical set of arrangements (e.g.,
medium or slow tempo, drum beat, electronic keyboard, and
so on) and R&B vocalists also share common characteristics
(e.g. high vibrato, pitch embellishment, and emotional). Third,
annotators could be affected by the background instrumental
sounds when they annotate the songs as you pointed out.
Lastly, we used F-score and AUC to report the difference. The
accuracy-based metrics may not be the best to differentiate the
models with different inputs.

We can compensate for the accuracy-based metric with rep-
resentational dissimilarity analysis, which is used to compare
response patterns elicited in a brain region or model repre-
sentation of neural networks [51]. This shows overall repre-
sentational similarity (instead of accuracy-based performance
similarity) and measures how similarly the models respond
to input. The representational similarity can be computed by
correlation between two different responses from the compared
models. In our setting, we made tag prediction vectors for all

TABLE V
SPEARMAN’S RANK CORRELATION COEFFICIENTS BETWEEN PAIRS OF
REPRESENTATIONAL SIMILARITY MATRICES FROM MODELS TRAINED

WITH DIFFERENT AUDIO SAMPLES.

Representation pair Spearman’s r
Mixed - Vocal 0.9158

Mixed - Background 0.8504
Vocal - Background 0.7783

training examples from two models with different inputs and
form a example-by-tag matrix for each. By multiplying the two
matrices, we obtained an example-by-example matrix, which
shows the representational similarity. This is often summarized
using the Spearman rank correlation. We show the results for
different pairs of models in Table V. The mixed audio input
and the isolated vocal input have a strong correlation given the
tag annotations. Thus, the two models respond to their inputs
(or make the tag predictions) in a more similar manner. On
the other hand, the isolated vocal and the background music
have a significantly attenuated correlation. This result ensures
that the vocal tags are more strongly tied to the vocal sounds
in the mixed audio.

VI. APPLICATIONS

Music auto-tagging systems can be applied to various music
services such as query-based music retrieval and music rec-
ommendation (or playlist generation) [52]. The voice-specific
auto-tagging system can provide more unique and artist-
oriented services. This section proposes potential applications.

A. Querying and Retrieval

A straightforward application is query-based music retrieval
based on the vocal tags. Compared to other music auto-tagging
systems, this system can be useful for searching songs with a
certain vocal characteristic. For example, users can find songs
with “Clear” voice using the corresponding tag. The query can
be not only one of the vocal tags but also an audio track. For
example, if a user likes a song because of the vocal, the system
can predict vocal tag activations of the song from the audio
track, and search other songs with similar vocal tag activations.

The query can be also artist-level. Given a set of songs
that belong to an artist, we can compute average activations
of the vocal tags to represent the artist. The resulting tag
activation vector will be similar to those in Figure 5. Note that
this vector itself explains the artist voice in a human-friendly
way with the tag words. Using similarity between the two tag
activation vectors, we can retrieve artists with similar vocal
characteristics. Table VI shows several examples of retrieval
results. For example, “Lee Hi” has a tag activation vector
where top 5 elements correspond to “Female”, “Soulful/R&B”,
“Rich”, “Vibratio”, and “Mid-Range”. Using the tag activation
vector as a query, the most similar artists were searched and
listed in the Table. They are all female singers in common and
are well-known for very skillful and expressive singing styles
with the R&B feel.
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Fig. 10. Temporal probabilities of three tag prediction relevant to chorus sections and RMS energy in dB in three selected songs. We smoothed the temporal
plots with a 5-point moving average filter.

TABLE VI
RETRIEVAL RESULTS OF ARTIST-LEVEL QUERIES. THE TOP 5 TAGS

EXPLAIN THE QUERY ARTIST. SIMILAR ARTISTS ARE SHOWN WITH THE
CORRESPONDING COSINE DISTANCES.

Query (artist) Top 5 Tags Similar Artists

Lee Hi
Female, Soulful/R&B,

Rich, Vibrato,
Mid-Range

Ann (0.0473)
So Jung (0.0538)

Son Seung-yeon (0.0606)
ALi (0.0733)

Ailee (0.8500)

IU
Female, Pretty, Sweet,

Breathy, Young

Kei (0.0354)
Raina (0.0448)
Narsha (0.0495)
So Jin (0.0523)
Minah (0.0560)

John Park
Male, Stable,

Vibrato, Soulful/R&B,
Husky/Throaty

Taeyang (0.0510)
Hwanhee (0.0606)

Park Hyo Shin (0.0611)
Zio (0.0630)

Chang Min (0.0637)

B. Music Thumbnailing

Music thumbnailing is a task of finding the most represen-
tative or highlight section of a song [53]. This is useful for fast
music browsing or preview in music service. Previous work
tackled the problem by exploiting structural similarity within
a song (e.g., detecting repetitive or chorus sections) [53] or
semantic attention mechanism [54]. Since the KVT dataset
provides tags that are explicitly relevant to highlight sections
such as “High-Range”, “Energetic” or “Shouty”, we can use
the tag prediction levels as an indicator of highlight sections.
Figure 10 shows three examples of temporal predictions of
the tags. To easily interpret the results, we manually annotated
them with a structural label, “chorus”, which is typically used
as a music thumbnail [53]. We also compare the tag prediction
levels to root-mean-squares (RMS) energy which is also a
strong indicator of highlight section [55]. The song in Figure
10 (a) is an exciting dance music sung by a girl group. While
the RMS energy does not change much, the rise and fall of the
three tag predictions effectively represent the chorus section.
The other two songs also show the similar correspondence. An
exception is that the “Energetic” tag is not strong in Figure

10 (c). This might be because the track is an R&B song with
soft mood. In general, these results show a potential use of
the specific vocal tags in music thumbnailing.

C. Qualitative Singing Evaluation

Singing evaluation is an essential module of karaoke sys-
tems. Traditional approaches focused on the preciseness of
pitch and rhythm in singing, which can be rated by compar-
ing singer’s pitch and energy contours to a given melodic
score [10]. Beyond the standard singing evaluation, recent
approaches have attempted to measure singing techniques such
as vibrato [56] or even “singing enthusiasm” [57]. Our pro-
posed vocal auto-tagging system can be also used to evaluate
singing but focusing on voice timbre or singing styles. This
qualitative analysis can be used not only as a complement
to scoring the preciseness of pitch and rhythm but also for
characterizing users’ voice. Recent online karaoke services
allow for recording singing along with background music and
sharing the audio tracks in their websites. As aforementioned
in Section VI-A, we can represent one’s voice with a vocal
tag vector and explain general characteristics using the auto-
tagging system. Furthermore, the tag vector can be used to find
other users with similar vocal characteristics and so promote
social activity among users in the karaoke services. In addition,
the voice-based retrieval can be used to recommend songs
from artists with similar voices.

VII. CONCLUSIONS

We presented a study on qualitative analysis of singing
voice in popular music. We described the details of data
collection process and conducted statistical analysis of vocal
tag annotations in various perspectives including frequency,
agreement, temporal dynamics and similarity. Through the
auto-tagging experiments, we showed that segment-level tag
annotation is crucial to handle the dynamics nature of singing
voice, agreement of tag annotation is proportional to auto-
tagging performance, and isolated vocal as input boosts the
performance further when vocal tags are more specific to
voice. We also showed potential applications which can be
useful in music streaming or music entertainment services.
However, our study has several limitations. First, the collected
dataset is not sufficiently large and so we had to use a simple
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CNN for the auto-tagging system as a baseline. To overcome
the limitation of small data, we could use transfer learning.
For example, we can train a deep neural network model using
a large-scale of vocal audio segments and artist labels [58],
[59]. This provides vocal embedding space from which we can
extract the vocal features and apply them to the vocal tagging.
Second, some of vocal tags are still ambiguous, which is a
obstacle to train the reliable auto-tagging system. We need to
have a systemic approach to control it. For example, we can
measure the agreement such as Krippendorff’s alpha while
collecting the human annotation data, and if the agreement
is sufficiently low, we can discard the tag. Third, our dataset
covers K-pop music only. Although the K-pop music is not
exotic but rather similar to Western pop in terms of musical
melody and arrangement, it definitely retains some unique
characteristics due to the different cultural background. For
example, lyrics is Korean and many of songs are highly
emotional. Nonetheless, our study takes a first step toward
qualitative analysis of singing voice in popular music and
provides directions for further research. We share the KVT
dataset and demo examples. The audio data is not available
because of copyright issues but we provide links to access to
the audio data. We described the details in the project website
2.
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