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Abstract

The number of music recordings that users can access is increasing, as composi-

tion and distribution of music becomes convenient through digitalization. In addition,

user-generated music contents are distributed, and the functional use of music to am-

plify the mood or atmosphere of places (e.g. cafe, restaurant) or media content (e.g.

video) is also increasing. Therefore, the act of searching for music contents is be-

coming very important. Most of the existing music search systems are mainly based

on a catalogue-based search or a metadata-based search. Metadata-based search is to

search for the exact matching song if you already know the song information such as

song name or artist name, and catalogue-based search is to search for songs within

categories such as genre, or mood, making detailed search difficult. If there is a way

to find similar sounds-like songs to a query song, we will be able to browse and search

many music recordings. Traditionally, the related technology is a recommendation

algorithm based on the user’s listening history. But basically, this recommendation

algorithm cannot recommend songs that the user has not already consumed, and the

recommendation is a passive act, and its use for active music search is limited. There-

fore, the goal of this thesis is to explore content-based music search system that di-

rectly analyzes audio and searches through it.

In this dissertation, I explore the content-based music search methodology in

three main aspects: a module for analyzing audio, a similarity-based deep learn-

ing method using various similarity concepts, and a methodology that opens up the

possibility of new music search applications. To do that, the background method-

ology is explained in Chapter 2, an effective audio model is explored in Chapter 3,

learning methods using various music similarity concepts are explored in Chapter 4,



and a unified framework for similarity-based learning system that enables new music

search application is explored in Chapter 5. More concretely, in chapter 3, I propose

a more effective audio model that can directly perform on waveform instead of us-

ing spectrogram-based features. In chapter 4, I propose a similarity-based learning

method that utilizes various music metadata with different levels of similarity con-

cept. In chapter 5, I propose two new music search applications which are query-by-

attribute and query-by-prototype by adding several techniques to the similarity-based

deep learning methods. Through the exploration of this thesis, I hope we will be able

to develop a better content-based music search system.

Keywords Music similarity, music search, content-based music retrieval, waveform-

based audio model, objective metadata, multidimensional music similarity, classifica-

tion, metric learning, disentangled representation
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Chapter 1. Introduction

The music consumption experience has changed dramatically over the past decade.

When vinyls were sold in the past, we thought carefully to buy one record at a record

store. Since the release of CDs, we have been able to enjoy better sounding music at

an affordable price. And, by the time when music began to be consumed in digital

format (e.g. mp3), we were able to download music, and create our own playlists to

listen to. In recent years, as music consumption has recently become a form of rental

rather than a form of ownership such as streaming, music gradually has become a

commodity that is produced and consumed more rapidly. Also, music is expanding

to music video, live concerts, cover song, and remix. As the content creator base ex-

pands, user-created music is uploaded and distributed to services such as SoundCloud,

YouTube, and Beatport.

Figure 1.1: Music consumption trends.

Music consumption as a function is also expanding. Traditionally, music is used

functionally in movies and broadcasts to boost mood or atmosphere, or to evoke mem-

ories of specific people and spaces. Recently, due to the expansion of the video

contents, music is actively used functionally for background music in podcasts and

YouTube videos. Accordingly, services such as Epidemic Sound, Artlist, and Premi-

umBeat that sell music in alternative licenses are increasing. Furthermore, music is

used to create the mood of a space where multiple people stay together, such as a

1



cafe, restaurant, and car environment, and this kind of use is becoming an important

independent music consumption scenario. In addition, in A&R at a record company,

a lot of time is spent on finding suitable artists, which will also be an important form

of music consumption.

Figure 1.2: Functional use of music.

In this continuously changing music consumption experience, it is a very impor-

tant problem for users to find various versions of music. Previously, this is mainly

done by various forms of recommendation technology. A recommendation technol-

ogy that has been successfully used in music streaming or video streaming services

is to recommend music that users expect to like from their past content consumption

history without instant queries from users. However, there are several problems in

applying this recommendation algorithm to various contemporary music consumption

behaviors. First, when various versions of music are newly created and user data is

hard to accumulate, music recommendation is difficult and this is called a cold-start

problem. Second, if there is a specific purpose of use such as functional music con-

sumption, it is necessary to know the intention of what the user is looking for at that

moment rather than the user’s past history. Therefore, music search remains a unique

and important problem apart from music recommendation.

Figure 1.3: Music recommendation vs music search.
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Current music search methods mainly consists of a basic search function such as

metadata-based search in which the corresponding songs are searched when the artist

and song name are known, and a catalogue-based search that finds music according

to their categories such as genre or mood. However, metadata-based search finds

mostly the corresponding song, so the scope of its specificity is very limited. Also,

category-based search shows all songs in dozens of categories, making it difficult to

select detailed songs because there are many songs in the category. If there exist a

linear space in which songs with similar overall feel or mood are located closer and

other songs are far away by directly analyzing musical characteristics, we will be able

to have more powerful and useful user experiences.

Figure 1.4: Traditional music search.

The field of content-based music retrieval makes more advanced search possi-

ble. In this case, music retrieval is possible by analyzing only audio content without

metadata or user listening data. The basic concept is to project music audio into an

organized space where musical characteristics are well represented, and to perform

music search in this space. The process is as follows. Assuming that a well-built

audio feature space exists, all music audio passes through this function to extract em-

bedding features, and search for similar songs in the space. Also, if tag or artist-level

entities can be mapped in this space, then query-by-example, query-by-tag, and query-

by-artist will all be possible. We will explain these in more detail in the following

section.

1.1 Content-based Music Retrieval

In the field of content-based music search, there are several query-by-example

tasks [2–4]. Tasks such as audio identification or version identification are also in-

cluded in the content-based music retrieval, but in this thesis, among these various
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Figure 1.5: Content-based music retrieval.

content-based retrieval fields, our main target is not to find the exact song as the query

song, but to find other music with similar overall feel or mood. Also, we focus on a

song-level (or document-level) retrieval, which is a comparison between songs rather

than between music segments. To do this, it is important to create an embedding func-

tion that demonstrate high-level musical characteristics, and it is important to consider

the semantic gap and specificity aspects when creating this embedding function. These

will be explained in the next sections.

1.1.1 Semantic Gap and Deep Embedding Function

Figure 1.6: Semantic gap.

The semantic gap refers to the difference between high-level features that people

generally use when searching for music and low-level features that can be extracted
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by computational methods from audio data. Here, the high-level feature refers to mu-

sic descriptors level information, and the low-level feature refers to loudness, onset,

chord, and tempo level information. It can be more human friendly if higher-level

information can be used in search, but it is a difficult problem to build a system that

extracts these high-level features. Recent advances in deep learning technology have

narrowed this semantic gap in the area of image and audio. There are many hierar-

chical layers in different abstraction level from signal-level information to semantic-

level information, deep learning models that have multiple nonlinear layers show good

performance in modeling high-level information. In the image domain, in the past,

low-level information such as color, texture, and shape was extracted and a predic-

tive model was built on it. With the development of deep learning technology, it has

recently evolved into an end-to-end model that analyzes the raw image itself. In the

audio domain, low-level features such as MFCC and Chroma were used, and gradually

developed into a spectrogram-based method, but there were no successful techniques

for analyzing raw waveforms directly. Therefore, in this thesis, we explore a model

that extracts high-level features directly from the raw waveforms.

1.1.2 Specificity and the Notion of Similarity

Figure 1.7: Specificity.

Specificity refers to how similar songs are compared to the query song when

searching for music. For example, finding the same song as the query audio within a

large database of content would have the highest specificity level, finding a style and

genre similar to query audio would be low specificity, and sounds like query audio but

not identical to the query audio would be in the middle. In this thesis, the main goal is

to find a song that is most similar to a query song, but not identical to the query song,
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so that it can be used when searching for music. In order to create an similarity model

in which these musical characteristics are preserved, various notions of similarity can

be supervised in the model. For example, semantic tags that are labeled on music,

acoustic features such as energy or tempo, and objective metadata such as artist, al-

bum, and track information may be utilized. Also, if there is an adjustable part in the

embedding function so that we can control the specificity when searching, it will be

of great help in user experience. Therefore, in this thesis, we explore the embedding

function learning techniques using various notions of similarity, and develop a music

search methodology capable of controlling specificity.

1.2 Related Research Topics

Research topics closely related to content-based music retrieval include audio-

based music classification and tagging, and metric learning for music similarity. There

is also an emerging field of disentangled multidimensional metric space. We will look

at them in the next sections.

1.2.1 Music Classification and Tagging

The main purpose of music classification and tagging is to predict the tags that

describe music from audio. In general, the tagging task is distinguished from the clas-

sification task in that tags are multi-labeled with words such as era, instrument, and

style in addition to genre and mood. Therefore, in general, the tagging model is highly

utilized, and many audio-based music classification and tagging model studies have

been conducted based on the tagging task [5–8]. Thus, in the case of the predictive

model verified in this task, it can be widely used in other tasks as a good deep em-

bedding function that can bridge the semantic gap well. The last hidden layer of this

deep embedding function is often used in transfer learning as an intermediate feature

to other tasks. However, research on the use of this last hidden layer as a similarity

space is insufficient. This thesis also aims to develop and utilize the efficient similarity

space of the last hidden layer of the music classification and tagging model.
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Figure 1.8: Music classification and tagging.

1.2.2 Metric Learning for Music Similarity

Audio-based music similarity has been mainly studied in the field of metric learn-

ing. Metric learning aims to create a metric space so that similar songs are distributed

closer and other songs are distributed farther away. Various similarity notions and

data types can be used for metric learning. For example, a classification type label

annotated in music audio, and pair or triplet similarity data can be used for similar-

ity learning. The concept of similarity can also be used in various ways [9, 10]. For

example, information such as whether songs are from the same semantic label or not,

whether they are songs of the same artist, or recommendation data can all be used.

Prior studies were conducted with a linear metric learning method until 2010, but the

performance was not satisfactory enough to fill the semantic gap and thus did not

lead to a commercial level. At the present time, the performance of the audio model

(or deep embedding function) itself has improved a lot with development of the deep

learning, in this thesis, we explore metric learning for music similarity using a deep

embedding function, and finds a way to use diverse music information at different

levels of specificity.
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Figure 1.9: Metric learning for music similarity.

1.2.3 Disentangled Multidimensional Metric Space

Music is a multidimensional phenomenon. Songs have many dimensions of char-

acteristics such as genre, tone, rhythm, and mood, and the two songs may be similar or

different in some ways. If the similarity space could be separated by certain musical

element characteristics, we can do interesting applications such as multidimensional

music retrieval. For example, sometimes the user wants to search a playlist with a

lighthearted mood, and at other times the user can search for music by era. To do that,

in the image domain, Conditional Similarity Networks (CSN) has been proposed [11],

and opens the possibility of multidimensional search by proposing a method of sepa-

rating the search metric space using a masking function. Therefore, in this thesis, we

apply CSN to the music representation learning, including classification and metric

learning, and explore the possibility of multidimensional music search.

1.3 Research Contributions

The research contributions of this thesis can be largely summarized as follows. First,

we explore the effective deep embedding function through the music classification and

tagging task. Then, we explore how to make a similarity-based model using various

similarity notions of music. Finally, a study was conducted on a method to enable

multidimensional search by separating the metric space. Details of each contribution
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are as follows.

• First, in a situation where deep learning was applied to audio in the music classi-

fication and tagging task, but still intermediate features such as mel-spectrogram

were mainly used, a model that can be learned directly from the raw wave-

form is explored, and as a result, it showed better performance than the mel-

spectrogram.

• At the time of transition from linear metric learning to deep metric learning, we

revisit metric learning of music with deep models. In particular, the composition

of metric space using various notions of music similarity, such as tag, artist,

album, track information, was explored. As a result, we showed that free artist

labels are as useful as tag labels.

• We applied Conditional Similarity Networks (CSN) to deep metric learning for

music similarity and open the possibility of multidimensional music retrieval.

Furthermore, we proposed disentangled version of classification model, and

showed that this type of disentangled classification model with normalization

technique is very effective.

Figure 1.10: Contributions in geometric view.
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Chapter 2. Background

The main modules for the development and use of similarity-based deep learning

for music retrieval are deep embedding function, the notions of similarity, learning

methods, and application and evaluation. Let’s take a closer look at these.

2.1 Deep Embedding Function

First, deep embedding function, or deep audio model, basically refers to a deep

learning model architecture that extracts high-level features from audio. From here,

we define the deep embedding function as f(x), x represents the audio example. In

our main task, the song-level music retrieval, the training and application of the deep

audio model should take into account the followings.

2.1.1 Music Audio and Convolutional Neural Networks

Music is a very complex audio, and I would like to compare this sound to the

speech and scene sounds, which are other large fields of audio. I would like to say two

dimensions: whether the sound sources are polyphonic with multiple sound sources,

and whether the sound sources have a long-term structure. For example, speech is

structured in sequence because it is mainly a single speaker and has a semantic mean-

ing. On the other hand, the scene sound is polyphonic, but the individual sounds are

not structured, they are occurred very naturally. Music is polyphonic, and the sound

sources are structured and even these sounds are well mixed, making music a work of

art. Therefore, it is important to understand the characteristics of these music audio

in order to develop a good deep embedding function. Since sound is sequential data,

we often think that sequence modeling algorithms such as Recurrent Neural Networks

will work well, but many previous studies have not yet created a deep learning-based

sequence modeling algorithm that works well for musical audio. This may be because

both the areas related to this thesis, music classification and tagging, and metric learn-

ing for music similarity, all deal with a level close to high-level semantic search. For
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example, in comparing rock and funk, it may be more efficient to look at the composi-

tion of instruments and beats in a few seconds rather than the difference in the overall

progression of the song. Therefore, the Convolutional Neural Network (CNN) is often

used to model high-level features. CNN has a great advantage in extracting features

related to local repetitive textures. This is possible because the CNN is made by over-

lapping filters of small sizes. As a learning method, an audio segment, usually between

1 and 10 seconds, is used to train the model and a song level labels are used as the

label for the segments. The concept of multiple instance learning is used here. For ex-

ample, some segments of audio may match with the song-level labels, and in the case

where music is like K-pop having multiple genres within a song, some segments may

be different from the song-level labels. However, by using these multiple instances

(segment), we can give the model more degrees of freedom and make a model with

better segment-level predictions. After training is complete, feed-forwarded features

for all segments in the song are averaged and treated as a song-level feature.

2.1.2 Mel-Spectrogram vs Waveform

In these CNN models, the mel-spectrogram can be used as an input and the wave-

form can also be used as an input directly. Since the mel-spectrogram stacks the

frequency-wise features on the vertical axis and the time-wise features on the frame,

the dimension of a time is dramatically reduced compared to the waveforms. This

makes the deep embedding function, a deep CNN model, more convenient to extract

high-level features. However, since parameters such as the number of mel filters, win-

dow size, and hop size are fixed in mel-spectrogram, during the extraction of these

frequency-based features, there are limitations in creating a deep embedding function

that is more optimized for data and labels. Therefore, there have been attempts to take

the waveform as an input directly [12]. Because waveforms are very large data in one

dimension, the deep embedding function based on waveforms was initially developed

in the form of simulating a mel-spectrogram. However, this approach does not show

better performance than the mel-spectrogram, so the waveform-based approach is not

widely used. The waveform-based approach has the advantage of being efficient be-

cause it does not require separate feature data storage. Therefore, it is important to
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develop a waveform-based approach that works well.

2.2 Different Notions of Similarity

When creating a similarity metric space, it is very important which similarity

notion to use for training. If there exist pairs or triplets with similarity annotations, we

can directly use them for training, but since these do not exist largely, we usually use

song-level annotation data. With song-level annotations, songs in the same category

can be treated as similar songs and songs in different categories can be regarded as

different. There are three major song-level annotation data: semantic labels, objective

metadata, and acoustic features, and we will look at them in detail.

2.2.1 Semantic Labels

Semantic labels are words such as genre, mood, style and theme that users an-

notated in music. It usually consists of a set of hundreds of words and can be a

taxonomy created with great care, or a folksonomy refined from user’s comments or

reviews. Since all music is annotated with hundreds of words, we may think that there

are too many songs in one category, and the specificity of the semantic labels is poor.

However, since the music is multifaceted data, it is often multi-labeled, so it is possi-

ble to compare songs that share several words. So, semantic labels become the notion

of similarity, which has a non-low specificity. However, these semantic labels belong

to data that is time-consuming and expensive because people have to annotate them

themselves.

2.2.2 Objective Metadata

Objective metadata refers to data that is automatically annotated with the release

of an album or song. These include artist names, album names, and track names.

This information is cheaper and more objective than semantic labels. For example,

semantic labels may be judged differently depending on the propensity of annotators,

but this kind of metadata is objective. On the other hand, these objective metadata is

characterized by a very large number of class labels, but a relatively small number of

12



instances or samples belonging to each class label. For example, the number of artists

can reach tens of thousands, but the average number of songs released by individual

artists can be only a few dozen.

2.2.3 Acoustic Features

The above semantic labels and objective metadata represent high-level informa-

tion, and our goal is also to create a high-level feature space. However, when con-

sidering a music retrieval scenario, acoustic features such as tempo and loudness are

low-level, but can be used very importantly when searching for music. For example,

if we need a music that has a similar overall mood or feel to the query song, but only

a bit faster or slowwer in tempo, then training the model with these kind of low-level

features will be useful. This requires an algorithm to extract these acoustic features,

which can be either a signal processing based algorithm or a deep learning based al-

gorithm. The recent advances in deep learning technology have greatly improved the

performance of music information retrieval algorithms, so even if it is a pseudo label

extracted from algorithms rather than an exact label annotated by a person, it is quite

useful.

2.3 Learning Methods

Figure 2.1: Metric learning vs classification.
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There are mainly two ways to train deep embedding model: classification and

metric training. In addition, there are metric space normalization and Conditional Sim-

ilarity Networks (CSN) techniques that can be applied to these two learning methods.

Classification is a method of learning a model using an example-to-tag relationship,

and metric learning is a learning method using an example-to-example relationship

that is created using some similairty notion. Metric space normalization enables bet-

ter search by normalizing the search space, and CSN is a method that enables multidi-

mensional search by explicitly dividing the metric space into several sub-dimensions.

Let me explain them more in detail.

2.3.1 Classification

Classification is to predict an associated labels from music audio. The formula is

as follows.

ŷ = Activation(W · f(x) + b), (2.1)

where ŷ denotes prediction value, ŷ 2 RM , and M is the number of class labels.

f(x) is a deep embedding function, f(x) 2 RN , and N is the dimension of feature

or metric space. W is a dimension of M⇥N matrix, and b is bias term. In addition,

a combination of CrossEntropyLoss and Activation is used for model optimiza-

tion. In general, a combination of softmax activation and categorical cross-entropy

loss is used in single-label classification, and a combination of sigmoid activation and

binary cross-entropy loss is used in multi-label classification. Here, if we ignore the

activation and bias terms, then the formula becomes as follows.

W · f(x) = [c1, c2, ..., cm] · f(x),

Metric(ci, f(x)) = ci · f(x).
(2.2)

In this equation, ci is a feature vector of dimension m and plays a role as a class cen-

troid for each label. Then, this class centroid forms a dot product based metric space

with the deep embedding function f(x). However, in the case of classification, the

goal is not to build a well-established metric space, but to perform a label prediction

well, so it is not suitable for searching in the metric space. This is because each class

centroid ci of W has a m dimension of freedom and forms a twisted projection with
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f(x).

2.3.2 Metric Learning

On the other hand, metric learning aims to build a metric space as priority.

Metric(f(xi), f(xj)), (2.3)

as shown in this equation, in metric learning, it is easy to perform similarity search

in metric space because it directly compares the output of deep embedding function

of two examples. Here, the metric can be any distance or similarity metrics such as

euclidean distance or cosine similarity. For convenience, I will explain this section

with similarity based metric. The following triplet hinge loss is widely used as a loss

for metric learning.

TripletLoss(xa, xp, xn) = max{0,Metric(f(xa), f(xn))�Metric(f(xa), f(xp))+�},

(2.4)

As inputs, three examples are taken: xa, xp, and xn, each representing an anchor,

positive and negative examples. Anchor and positive are the same class label or similar

example, but not negative. In Equation 2.4, � means margin, and TripletLoss is that

when Metric is based on similarity, the similarity value between anchor and positive

is closer by margin than the similarity value between anchor and negative. Here, the

triplet can be a triplet in which user’s judgement is annotated, or it can also be a

sampled triplet from class label annotations.

2.3.3 Metric Space Normalization

Since the metric space is used for similarity search, it is good to have a unit

bounded metric space as it can provide a more compact structure of examples. There-

fore, normalization technique is often used. In metric learning,

Metric(
f(xi)

||f(xi)||
,
f(xj)

||f(xj||
), (2.5)

as above, a normalized metric is used and representative ones are normalized Eu-

clidean distance or cosine similarity. Also, if this kind of normalization technique is
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applied in classification, then the Equation 2.2 becomes as follows.

Metric(ci,
f(x)

||f(x)||), (2.6)

Here, now the deep embedding feature is unit bounded, so it is more useful for simi-

larity search.

2.3.4 Conditional Similarity Networks

Furthermore, Conditional Similarity Networks (CSN) separates the metric space

so that each sub-dimension of a metric space is responsible for each similarity notion

[11]. This was first proposed in the image domain. This method uses higher hierarchy

information in addition to the class label information as an additional supervision,

such as genre, mood, and instrument. Then, the Equation 2.5 now becomes

Metric(
f(xi)

||f(xi)||
�ms,

f(xj)

||f(xj||
�ms), (2.7)

where � is Hadamard product and ms is a mask. This mask is multiplied by the em-

bedding feature and serves to construct a sub-metric space for each similarity notion.

If this mask is also applied to the classification metric, it is as follows:

Metric(ci �ms,
f(x)

||f(x)|| �ms). (2.8)

If the model training is done with this masking function, then, we can search for music

in each masked metric and it is called multidimensional search.

2.4 Application and Evaluation

This section introduces the various applications and evaluation methods of the

deep metric model.

2.4.1 Tag-based Retrieval

First, tag-based retrieval is to search for related songs using music description

words. In the case of the classification model, related songs can be searched by sort-

ing the class prediction values of songs for each word in descending order. For metric
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Figure 2.2: Applications in geometric view.

learning, we don’t have these predicted values for each word, so we need to use differ-

ent methods for tag prediction. One method is similar to the method used in prototyp-

ical network [13]. This method first averages the embedding features of all the songs

that are annotated for each tag, and treats it as a class centroid. Then, the distance

between this class centroid and the embedding feature of the song is measured and it

is used as a tag prediction value. This can be expressed by the following equation.

ci =
1

N

X

x2Si

f(x), (2.9)

where ci is the i-th class centroid, Si is the set of all songs annotated with the i-th class

label, and N is the number of examples in a set Si. This task is generally evaluated by

measuring the ranking by tag and averaging the ranking score for all tags, and Area

Under the ROC Curve (ROC-AUC) being the dominant evaluation metric.

2.4.2 Example-based Retrieval

Example-based retrieval is to perform a search between songs in a metric space

when there is a deep embedding function. This query-by-example is simply done

with the nearest neighbor search by calculating the distance between the embedding

features of all songs. In the evaluation of this task, in the case of single-label, a

simple k-nearest neighbor is performed to determine whether the nearest k examples

belong to the same class as the query. However, in the case of multi-label annotations,
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evaluation is not easy, so we propose a multi-label Recall@K evaluation method in

Chapter 5.

2.4.3 Multidimensional Retrieval

Multidimensional retrieval is to perform a search on each of these subspaces

when the metric space is divided according to several similarity notions as shown

in Section 2.3.4. When deep embedding function exists and the normalization tech-

nique is applied, the sub metric space according to the similarity notion s becomes as

follows,
f(x)

||f(x)|| �ms. (2.10)

This multidimensional retrieval can be evaluated as a task to predict separately sam-

pled triplet according to each similarity notion.

2.4.4 Prototype-based Retrieval

Going further, we can perform a prototype-based retrieval. Prototype-based search

is to search for similar songs by entity, such as artist and album names, rather than by

music description words. This can be done by applying the method of creating class

centroid that has been presented in Equation 2.9. For example, if the set Si in Equation

2.9 is substituted with the set of all songs owned by a specific artist, not all songs be-

longing to one tag, then we can get an artist centroid or artist prototype. We can extend

the application scenario by using these centroids. Applications such as query-by-artist

or query-by-album can be examples.

2.4.5 User-rated Similarity Judgement

All of the evaluation methods listed above were quantitative measures of how

well the model prediction was correct when there was a groundtruth label. For ex-

ample, it is to measure whether a song searched as closest to the query song has the

same groundtruth label as the query song. However, it may be different whether users

actually feel how close the searched song is to the query song. Therefore, if we have
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similarity judgment data directly evaluated by the users, we will be able to better eval-

uate user’s actual behavior. To do this, we create user-rated similarity judgment data

in Chapter 5 of this thesis.
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Chapter 3. SampleCNN: Sample-level Deep Convolutional Neural
Networks Using Raw Waveforms

In this chatper, we will explore waveform-based deep audio model for music

classification and tagging problem, then we further verify the model to more general

audio classification problems such as speech commands classification and acoustic

scene tagging tasks.

3.1 Music Classification and Tagging

Convolutional Neural Networks (CNN) have been applied to diverse machine

learning tasks for different modalities of raw data in an end-to-end fashion. In the

audio domain, a raw waveform-based approach has been explored to directly learn

hierarchical characteristics of audio. However, the majority of previous studies have

limited their model capacity by taking a frame-level structure similar to short-time

Fourier transforms. We previously proposed a CNN architecture which learns rep-

resentations using sample-level filters beyond typical frame-level input representa-

tions. The architecture showed comparable performance to the spectrogram-based

CNN model in music auto-tagging. In this paper, we extend the previous work in

three ways. First, considering the sample-level model requires much longer training

time, we progressively downsample the input signals and examine how it affects the

performance. Second, we extend the model using multi-level and multi-scale feature

aggregation technique and subsequently conduct transfer learning for several music

classification tasks. Finally, we visualize filters learned by the sample-level CNN in

each layer to identify hierarchically learned features and show that they are sensitive

to log-scaled frequency.

3.1.1 Problem

Convolutional Neural Networks (CNN) have been applied to diverse machine

learning tasks. The benefit of using CNN is that the model can learn hierarchical lev-
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els of features from high-dimensional raw data. This end-to-end hierarchical learning

has been mainly explored in the image domain since the break-through in image clas-

sification [14]. However, the approach has been recently attempted in other domains

as well.

In the text domain, a language model is typically built in two steps, first by em-

bedding words into low-dimensional vectors and then by learning a model on top of

the word-level vectors. While the word-level embedding plays a vital role in language

processing [15], it has limitations in that the embedding space is learned separately

from the word-level model. To handle this problem, character-level language models

that learn from the bottom-level raw data (e.g., alphabet characters) were proposed

and showed that they can yield comparable results to the word-level learning mod-

els [16, 17].

In the audio domain, raw waveforms are typically converted to time-frequency

representations that better capture patterns in complex sound sources. For example,

spectrogram and more concise representations such as mel-filterbank are widely used.

These spectral representations have served a similar role to the word embedding in the

language model in that the mid-level representation are computed separately from the

learning model and they are not particularly optimized for the target task. This issue

has been addressed by taking raw waveforms directly as input in different audio tasks,

for example, speech recognition [18–20], music classification [12,21,22] and acoustic

scene classification [23, 24].

However, the majority of previous work have focused on replacing the frame-

level time-frequency transforms with a convolutional layer, expecting that the layer

can learn parameters comparable to the filter banks. The limitation of this approach

was pointed out by Dieleman and Schrauwen [12]. They conducted an experiment of

music classification using a simple CNN that takes raw waveforms or mel-spectrogram.

Unexpectedly, their CNN models with the raw waveform as input did not produce

better results than those with the spectral data as input. The authors attributed this un-

expected outcome to three possible causes. First, their CNN models were too simple

(e.g., a small number of layers and filters) to learn the complex structure of polyphonic

music. Second, the end-to-end models need an appropriate non-linearity function that
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can replace the log-based amplitude compression in the spectrogram. Third, the first

1D convolutional layer takes raw waveforms in a frame-level which is typically sev-

eral hundred samples long. The filters in the first 1D convolutional layer should learn

all possible phase variations of periodic waveforms within the length. In spectrogram,

the phase variation is removed.

We recently tackled the issues by stacking 1D convolutional layers using very

small filters instead of a 1D convolutional layer with the frame-level filters, inspired

by the VGG networks in image classification that is built with deep stack of 3⇥3

convolutional layers [25,26]. The sample-level CNN model has filters with very small

granularity (e.g., 3 samples) in time for all convolutional layers. The results were com-

parable to those using mel-spectrogram in music auto-tagging. In this paper, we term

the sample-level CNN architecture as SampleCNN and extend the previous work in

three ways. First, we should note that SampleCNN takes four times longer training

time than a comparable CNN model that takes mel-spectrogram. In order to reduce

the training time, we progressively downsample the waveforms and report the effect

on performance. By reducing the band-width of music audio this way, we will be

able to find the cut-off frequency where the performance starts to become degraded.

Second, we extended SampleCNN using multi-level and multi-scale feature aggrega-

tion [27]. The technique proved to be highly effective in music classification tasks.

We additionally evaluate the extended model in transfer learning settings where the

features extracted from SampleCNN can be used for three different datasets in mu-

sic genre classification and music auto-tagging. We show that the proposed model

achieves state-of-the-art results. Third, we visualize learned intermediate layers of

SampleCNN to observe how the filters with small granularity process music signals in

a hierarchical manner. In particular, we visualize them for each of sampling rates.

3.1.2 Related Work

There are a decent number of CNN models that take raw waveforms as input. The

majority of them used large-sized filters in the first convolutional layer with various

size of strides to capture frequency-selective responses which were carefully designed

to handle their target problems. We termed this approach as frame-level raw waveform

22



model because the filter and stride sizes of the first convolutional layer were chosen to

be comparable to the window and the hop sizes of short-time Fourier transformation,

respectively [12, 18–23].

There are a few work that used small filter and stride sizes in the first convolu-

tion layer (8 samples-sized filter [28] and 10 samples-sized filter [29, 30] at 16 kHz).

However, the CNN models have only two or three convolution layers, which are not

sufficient to learn the complex structure of the acoustic signals. In SampleCNN, we

deepen the layers even more, thereby reducing the filter and stride sizes of the first

convolution layer down to two or three samples.

3.1.3 Learning Models

Figure 3.1 illustrates three CNN models in music auto-tagging that we compare

in our experiments. Note that they are actually general architectures and so can be

applied to any audio classification tasks. In this section, we describe the three models

in detail.

Figure 3.1: Comparison of (a) frame-level model using mel-spectrogram, (b) frame-
level model using raw waveforms and (c) sample-level model using raw waveforms.
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Frame-Level Mel-Spectrogram Model

This is the most common CNN model used in music classification. The time-

frequency representation is usually regarded as either two-dimensional images [7, 31]

or one-dimensional sequence of vectors [8, 12]. We only used one-dimensional(1D)

CNN model for experimental comparisons because the performance gap between 1D

and 2D models is not significant and the 1D model is directly comparable to models

using raw waveforms.

Frame-Level Raw Waveform Model

In this model, a strided convolution layer is added beneath the bottom layer of

the frame-level mel-spectrogram model. The strided convolution layer is expected to

learn a filter-bank that returns a time-frequency representation. In this model, once

the first strided convolution layer slides over the raw waveforms, the output feature

map has the same dimensions as the mel-spectrogram. This is because the stride size,

filter size, and the number of filters in the first convolution layer correspond to the hop

size, window size, and the number of mel-bands in the mel-spectrogram, respectively.

This configuration was used for the music auto-tagging task in [12, 21] and thus we

used it as a baseline model.

Sample-Level Raw Waveform Model: SampleCNN

As described in Section 3.1.1, the approach using raw waveforms should be able

to address log-scale amplitude compression and phase-invariance. Simply adding a

strided convolution layer is not sufficient to overcome the issues. To improve this,

we add multiple layers beneath the frame-level such that the first convolution layer

can handle much smaller size of samples. For example, if the stride of the first con-

volution layer is reduced from 729 (=36) to 243 (=35), 3-size convolution layer and

max-pooling layer are added to keep the output dimensions in the subsequent con-

volution layers unchanged. If we repeatedly reduce the stride of the first convolution

layer this way, six convolution layers (five pairs of 3-size convolution and max-pooling

layer following one 3-size strided convolution layer) will be added (we assume that
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the temporal dimensionality reduction occurs only through max-pooling and striding

while zero-padding is used in convolution to preserve the size).

We generalized the configuration as mn-SampleCNN where m refers to the filter

size (or the pooling size) of intermediate convolution layer modules and n refers to the

number of the modules. The first convolutional layer is different from the intermediate

convolutional layers in that the stride size is equal to the filter size. An example of

m
n-SampleCNN is shown in Table 3.1 where m is 3 and n is 9. Note that the network

is composed of convolution layers and max-pooling only, and so the input size is

determined to be stride size of the first convolutional layer ⇥m
n. In Table 3.1, as the

stride size of the first convolution layer is 3, the input size is set to be 59049 (=3 ⇥

39).
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39-SampleCNN Model

59,049 Samples (2678 ms) as Input

Layer Stride Output # of params

conv 3-128 3 19, 683⇥ 128 512

conv 3-128
maxpool 3

1

3

19, 683⇥ 128

6561⇥ 128
49, 280

conv 3-128
maxpool 3

1

3

6561⇥ 128

2187⇥ 128
49, 280

conv 3-256
maxpool 3

1

3

2187⇥ 256

729⇥ 256
98, 560

conv 3-256
maxpool 3

1

3

729⇥ 256

243⇥ 256
196, 864

conv 3-256
maxpool 3

1

3

243⇥ 256

81⇥ 256
196, 864

conv 3-256
maxpool 3

1

3

81⇥ 256

27⇥ 256
196, 864

conv 3-256
maxpool 3

1

3

27⇥ 256

9⇥ 256
196, 864

conv 3-512
maxpool 3

1

3

9⇥ 512

3⇥ 512
393, 728

conv 3-512
maxpool 3

1

3

3⇥ 512

1⇥ 512
786, 944

conv 1-512
dropout 0.5

1

�
1⇥ 512

1⇥ 512
262, 656

sigmoid � 50 25650

Total params 2.46⇥ 106

Table 3.1: SampleCNN configuration. In the first column (Layer), “conv 3-128” indi-
cates that the filter size is 3 and the number of filters is 128.
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3.1.4 Extension of SampleCNN

Multi-Level and Multi-Scale Feature Aggregation

Music classification tasks, particularly music auto-tagging among others, have a

wide variety of labels in terms of genre, mood, instruments and other song character-

istics. Especially, they are positioned in different hierarchical levels and time-scales.

For example, some words related to instrument ones, such as guitar and saxophone,

describe objective sound sources which are usually local and repetitive within a song,

whereas other labels related to genre or mood, such as rock and happy, are dependent

on a larger context of music and are more complicated. In order to address this issue,

we recently proposed multi-level and multi-scale feature aggregation technique [27].

The technique is conducted by combining multiple CNN models. This assumes

that the hidden layers of each CNN model represent different levels of features and

the models with different input sizes provide even richer feature representations by

capturing both local and global characteristics of the music. In [27], they showed

that different level and time-scale features have different performance sensitivity to

individual tags and thus combining them all together is the best strategy to improve

performance. In this work, we replace the simple CNN architectures that take mel-

spectrogram as input in [27] with SampleCNNs, taking different input sizes (e.g., 700

ms to 3.5 s). Once we train the SampleCNNs as supervised feature extractors, we

slide each of them over a song clip (e.g., about 30 s) and obtain features from the last

three hidden layers. We then summarize them by a combination of max-pooling and

average-pooling. Finally, we concatenate the multi-level and multi-scale features and

feed them to a simple neural networks with two fully-connected layers to make a final

prediction.

Transfer Learning

The multi-level and multi-scale feature aggregation approach can be used in a

transfer learning setting by using different datasets or target tasks for the final clas-

sification after training the SampleCNNs. Especially, when the target dataset size

is comparably small to the model capacity, transferred parameters can yield better
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performance on the target task rather than parameters trained from the innate target

dataset. The applicability of transfer learning using a frame-level raw waveform model

has been explored in the speech domain [29]. Here, we examine it using the sample-

level raw waveform model for music genre classification and music auto-tagging with

different datasets.

3.1.5 Experimental Setup

Datasets

We validate the effectiveness of the proposed method on different sizes of datasets

for music genre classification and auto-tagging. All dataset splits are available on the

link [?]. The details of each dataset are as follows. The numbers in the parenthesis

indicate the split of training, validation and test sets.

• GTZAN [32]: 930 songs (443/197/290) 1, genre classification (10 genres).

• MagnaTAgaTune (MTAT) [34]: 21,105 songs (15,244/1529/4332), auto-tagging

(50 tags)

• Million Song Dataset with Tagtraum genre annotations (TAGTRAUM): 189,189

songs (141,372/10,000/37,817) 2, genre classification (15 genres)

• Million Song Dataset with Last.FM tag annotations (MSD) [36]: 241,889 songs

(201,680/11,774/28,435), auto-tagging (50 tags)

We primarily examined the proposed model on MTAT and then verified the effec-

tiveness of our model on MSD which is much larger than MTAT3. We filtered out the

tags and used most frequently labeled 50 tags in both datasets, following the previous

work [7, 12, 31]. Also, all songs in the two datasets were trimmed to 29.1 s long. For

transfer learning experiments, the model is first trained with the largest dataset, MSD,

and the pre-trained networks are transferred to other three datasets. The evaluation
1This is a fault-filtered split designed to avoid the repetition of artists across the training, validation

and test sets [33].
2This is a stratified split with 80% training data of the CD2C version [35].
3MTAT contains 170 h long audio and MSD contains 1955 h long audio in total.
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is conducted with area under receiver operating characteristic (AUC) for auto-tagging

datasets and accuracy for genre classification datasets.

Training Details

We used sigmoid activation for the output layer and binary cross entropy loss as

the objective function to optimize. For every convolution layer, we used batch nor-

malization [37] and ReLU activation. We should note that, in our experiments, batch

normalization plays a vital role in training the deep models that take raw waveforms.

We applied dropout of 0.5 to the output of the last convolution layer and minimized

the objective function using stochastic gradient descent with 0.9 Nesterov momen-

tum. The learning rate was initially set to 0.01 and decreased by a factor of 5 when

the validation loss did not decrease more than 3 epochs. A total decrease of 4 times,

the learning rate of the last training was 0.000016. Also, we used batch size of 23 for

MTAT and 50 for MSD, respectively.

Mel-Spectrogram and Raw Waveforms

In the mel-spectrogram experiments, window sizes of 36, 35 and 34 are used to

match up to the filter sizes in the first convolution layer of the raw waveform model

as shown in Table 3.2. FFT size was set to 729 (=36) in all experiments. When the

window is less than the FFT size, we zero-padded the windowed frame. The linear

frequency in the magnitude spectrum is mapped to 128 mel-bands and the magnitude

compression is applied with a nonlinear curve, log(1+C|A|) where A is the magnitude

and C is set to 10. Also, we conducted the input normalization simply by dividing the

standard deviation after subtracting mean value of entire input data. On the other hand,

we did not perform the input normalization for raw waveforms.
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3n Models,
59,049 Samples

as Input
n

Window Size
(Filter Size)

Hop Size
(Stride Size)

AUC

Frame-level
(mel-spectrogram)

4 729 729 0.9000
5 729 243 0.9005
5 243 243 0.9047
6 243 81 0.9059
6 81 81 0.9025

Frame-level
(raw waveforms)

4 729 729 0.8655
5 729 243 0.8742
5 243 243 0.8823
6 243 81 0.8906
6 81 81 0.8936

Sample-level
(raw waveforms)

7 27 27 0.9002
8 9 9 0.9030
9 3 3 0.9055

Table 3.2: Comparison of three CNN models with different window size (filter size)
and hop size (stride size). n represents the number of intermediate convolution and
max-pooling layer modules, thus 3n times hop (stride) size of each model is equal to
the number of input samples.

As described in Section 3.1.3, m refers to the filter size (which can be com-

pared to a window size of FFT in the spectrogram) or pooling size (which also can

be compared to a hop size of FFT in the spectrogram) of the intermediate convolu-

tion layer modules, and n refers to the number of the modules. In our previous work,

we adjusted m from 2 to 5 and increased n according to the configuration of m
n-

SampleCNN [25]. Among them, 39-SampleCNN model with 59049 samples as input

worked best and thus we fix our baseline model to it. In this configuration, we can

increase the filter size and stride size in the first layer by decreasing the layer depth

to conduct comparison experiments between the frame-level models and the sample-

level model. For example, if the hop size or the stride size of the first convolutional
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layer is 729 in either the frame-level mel-spectrogram model or the frame-level raw

waveform model, 4 convolutional modules with 3-sized filters are added when the

input size is 59,049 samples.

Downsampling

The downsampling experiments are performed using the MTAT dataset. 39-

SampleCNN model is used with audio input sampled at 22,050 Hz. For other sampling

rate experiments, we slightly modified the model configuration so that the models used

for different sampling rate can have similar architecture and similar input seconds to

those used in 22,050 Hz. In our previous work [25], we found that the filter size did

not significantly affect performance once it reaches the sample-level (e.g., 2 to 5 sam-

ples), while the input size of the network and total layer depth are important. Thus, we

configured the models as described in Table 3.3. For example, if the sampling rate is

2000 Hz, the first four modules use 3-sized filters and the rest 6 modules use 2-sized

filters to make the total layer depth similar to the 39-SampleCNN. Also, 3-sized filters

are used for the first four modules in all models for fairly visualizing learned filters.

Sampling Rate Input (in Milliseconds) Models # of Parameters

2000 Hz 5184 samples (2592 ms) 3-3-3-3-2-2-2-2-2-2 1.80⇥ 106

4000 Hz 10,368 samples (2592 ms) 3-3-3-3-2-2-2-4-2-2 1.93⇥ 106

8000 Hz 20,736 samples (2592 ms) 3-3-3-3-2-2-4-4-2-2 2.06⇥ 106

12,000 Hz 31,104 samples (2592 ms) 3-3-3-3-3-2-4-4-2-2 2.13⇥ 106

16,000 Hz 43,740 samples (2733 ms) 3-3-3-3-3-3-3-5-2-2 2.19⇥ 106

20,000 Hz 52,488 samples (2624 ms) 3-3-3-3-3-3-3-3-4-2 2.32⇥ 106

22,050 Hz 59,049 samples (2678 ms) 3-3-3-3-3-3-3-3-3-3 2.46⇥ 106

Table 3.3: Models, input sizes, and number of parameters used in the downsampling
experiment. In the third column (Models), each digit from left to right stands for
the filter size (or the pooling size) of the convolutional module of SampleCNN from
bottom to top. Thus, the number of digits represents the layer depth of each model.

31



Combining Multi-Level and Multi-Scale Features

For the multi-level and multi-scale experiments described in Table 3.4, we used

total 8 models including 213, 214, 38, 39, 46, 47, 55 and 56-SampleCNNs. Also, two

fully connected layers with 4096 neurons in each layer are used as classifier.

Features from SampleCNNs
Last 3 Layers

(Pre-trained with MTAT)
MTAT

39 model 0.9046
38 and 39 models 0.9061

213, 214, 38 and 39 models 0.9061
213, 214, 38, 39, 46, 47, 55 and 56 models 0.9064

Table 3.4: Comparison of various multi-scale feature combinations.

Transfer Learning

The source task for the transfer learning is fixed to music auto-tagging using

MSD because the dataset contains the largest set of music. In this experiment, 39-

SampleCNN was used. We examined the proposed model on three target datasets

for genre classification and auto-tagging. We also examined the performance differ-

ences when using features from multiple levels of the pre-trained CNNs and also their

combinations.

3.1.6 Results and Discussion

Mel-Spectrogram and Raw Waveforms

Table 3.2 shows that the sample-level raw waveform model achieves results com-

parable to the frame-level mel-spectrogram model. Specifically, we found that using

a smaller hop size (81 samples ⇡ 4 ms) worked better than those of conventional ap-

proaches (about 20 ms) in the frame-level mel-spectrogram model. However, if the

hop size is less than 4 ms, the performance degraded. An interesting finding from the
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result of the frame-level raw waveform model is that when the filter length is larger

than the stride, the accuracy is slightly lower than the models with the same filter

length and stride. We interpret that this result is due to the learning ability of the

phase variance. As the filter size decreases, the extent of phase variance that the filters

should learn is reduced.

Effect of Downsampling

During the experiments, we observed that the training time of the proposed Sam-

pleCNN is about four times longer than the frame-level mel-spectrogram model be-

cause the proposed model has more network parameters with deeper layers. In order

to reduce the training time, we downsampled the audio with a set of lower sampling

rates including 2000, 4000, 8000, 12,000, 16,000, 20,000 Hz. This can be regarded as

a time-domain counterpart of in linear-to-mel mapping in that both reduce the dimen-

sionality of input and preserve low-frequency content. The results in Table 3.5 show

that the performance is maintained down to 8000 Hz but it starts to be degraded from

4000 Hz. This may indicate that the relevant information to the task is concentrated

below 4000Hz (the Nyquist frequency of 8000 Hz). Also, we report the training time

ratio of the models taking re-sampled audio to the model using 22,050 Hz signal as

input. At the expense of the accuracy, the training time can be reduced to about half.
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Sampling Rate Training Time (ratio to 22050 Hz) AUC

2000 Hz 0.23 0.8700
4000 Hz 0.41 0.8838
8000 Hz 0.55 0.9031

12,000 Hz 0.69 0.9033
16,000 Hz 0.79 0.9033
20,000 Hz 0.86 0.9055
22,050 Hz 1.00 0.9055

Table 3.5: Effect of downsampling on the performance and training time. We matched
the depth of the models taking different sampling rate to the 39-SampleCNN. For
example, if the sampling rate is 2000 Hz, the first four convolutional modules use
3-sized filters and the rest 6 modules use 2-sized filters to make the total layer depth
similar to the 39-SampleCNN.

Effect of Multi-Level and Multi-Scale Features

To measure the effect of multi-level and multi-scale feature combination, we ex-

perimented with several settings in Table 3.4. The SampleCNN models are first trained

on MTAT dataset, then this pre-trained networks are used as feature extractors for the

MTAT dataset again. The results show that as more features are fusioned, the per-

formance increases. This can be viewed similar to an ensemble method, however

our approach is distinguished from it in that the feature aggregation is performed on

activations of the hidden layers, not on the prediction values.

Transfer Learning and Comparison to State-of-the-Arts

In Table 3.6, we show the performance of the SampleCNN model and the trans-

fer learning experiments (the bottom four lines). The results achieved state-of-the-art

results on three datasets except for MSD. However, when considering that the model

used in [27] utilized both multi-level and multi-scale features, the AUC score (0.8842)

obtained from multi-level features only seems to be reasonable. Also, we can see that

the multi-level and multi-scale aggregation technique generally improves the perfor-
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mance, particularly in GTZAN.

MODEL
GTZAN

(Acc.)
MTAT
(AUC)

TAGTRUM
(Acc.)

MSD
(AUC)

Bag of multi-scaled features [38] - 0.898 - -
End-to-end [12] - 0.8815 - -

Transfer learning [39] - 0.8800 - -
Persistent CNN [40] - 0.9013 - -

Time-frequency CNN [41] - 0.9007 - -
Timbre CNN [42] - 0.8930 - -

2-D CNN [7] - 0.8940 - 0.851
CRNN [31] - - - 0.862

2-D CNN [33] 0.632 - - -
Temporal features [43] 0.659 - - -

CNN using artist-labels [44] 0.7821 0.8888 - -
multi-level and multi-scale features

(pre-trained with MSD) [27]
0.720 0.9021 0.766 0.8878

SampleCNN (39 model) [25] - 0.9055 - 0.8812

�3 layer (pre-trained with MSD) 0.778 0.8988 0.760 0.8831
�2 layer (pre-trained with MSD) 0.811 0.8998 0.768 0.8838
�1 layer (pre-trained with MSD) 0.821 0.8976 0.768 0.8842

last 3 layers (pre-trained with MSD) 0.805 0.9018 0.768 0.8842

Table 3.6: Comparison with previous work. We report SampleCNN results on Mag-
naTAgaTune (MTAT) and Million Song Dataset (MSD). Furthermore, the result ac-
quired from multi-level and multi-scale feature aggregation technique is also reported
at the bottom 4 lines. “-n LAYER” indicates features of n layers below from the
output are used for the transfer learning setting.

3.1.7 Visualization

In this section, we investigate two visualization techniques that can broaden our

understanding of the learned hierarchical features in SampleCNN.
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Learned Filters

Previous work in the music domain is limited to visualizing learned filters only

on the first convolution layer [12, 21, 45] or visualizing responses after a filter is ap-

plied on a specific input [46, 47]. The gradient ascent method has been proposed for

directly seeing what is learned at a filter [48] and this technique has provided deeper

understanding of what convolutional neural networks learn from images [49, 50]. We

applied the technique to our SampleCNN to observe how each filter in a layer pro-

cesses the raw waveforms. The gradient ascent method is as follows. First, we gener-

ate random noise and back-propagate the errors in the network. The loss is set to the

target filter activation. Then, we add the bottom gradients to the input with gradient

normalization. By repeating this process several times, we can obtain the accumulated

gradients-based waveform like signal at the input which is optimized to maximize the

target filter activation. Examples of learned filters at each layer are in Figure 3.2. Al-

though we can find the patterns that low-frequency filters are more visible along the

layer, the estimated filters are still noisy. To show the patterns more clearly, we visu-

alized them as spectrum in the frequency domain and sorted them by the frequency of

the peak magnitude in Figure 3.3.
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Figure 3.2: Examples of learned filters at each layer.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Figure 3.3: Spectrum of the estimated filters in the intermediate layers of SampleCNN
which are sorted by the frequency of the peak magnitude. The x-axis represents the
index of the filter, and the y-axis represents the frequency ranged from 0 to 11 kHz.
The model used for visualization is 39-SampleCNN with 59,049 samples as input. Vi-
sualization was performed using the gradient ascent method to obtain the accumulated
gradient-based input waveform like signal that maximizes the activation of a filter in
the layers. To effectively find the filter characteristics, we set the input size to 729
samples which is close to a typical frame size.

Note that we set the input waveform estimate to 729 samples in length because, if

we initialize and back-propagate to the whole input size of the networks, the estimated

filters will have large dimensions such as 59,049 samples in computing spectrum.

Thus, the results are equivalent to spectra from a typical frame size. The layer 1 shows

the three distinctive filter bands which are possible with the filter size with 3 samples

(say, a DFT size of 3). The center frequency of the filter banks increases linearly in

low frequency filter banks but, as the layer goes up, it progressively becomes steeper

in high frequency filter banks. This nonlinearity was found in learned filters with a

frame-level end-to-end learning [12] and also in perceptual pitch scales such as mel

or bark.

Finally, we visualized spectrum of the learned filter for each sampling rate up to

4th layers. In Figure 3.4, we can observe that all SampleCNN models focus (or zoom

in) on the important low-frequency bands. We can also find that they show similar

non-linear patterns to those in Figure 3.3.
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Layer 1 Layer 2 Layer 3 Layer 4Layer 1 Layer 2 Layer 3 Layer 4

2000 Hz

4000 Hz

8000 Hz

12000 Hz

16000 Hz

20000 Hz

Figure 3.4: Spectrum visualization of learned filters for different sampling rates. The
x-axis represents the index of the filter, and the y-axis represents the frequency ranged
from 0 to half the sampling rate. 3-sized filters are used for the first four modules in
all models for fairly visualizing learned filters.

Song-Level Similarity Using t-SNE

We extracted features from SampleCNN and aggregated them at different hierar-

chical levels of layer for each audio clip. We then embedded the song-level features

into 2-D vectors using t-Distributed Stochastic Neighbor Embedding (t-SNE). Figure

3.5 visualizes the 2-D embedded features at different layer levels for selected tags

to examine how multi-level feature aggregation technique enhances the performance.

Songs with genre tag (Techno) are more closely clustered in the higher layer (�1

layer). On the other hand, songs with instrument tag (Piano) are more closely clus-

tered in the lower layer (�3 layer). This may indicate that the optimal layer of feature

representations can be different depending on the type of labels. Thus, combining

different levels of features can improve the performance.
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Figure 3.5: Feature visualization on songs with Piano tag and songs with Techno tag
on MTAT using t-SNE. Features are extracted from (a) -3 LAYER and (b) -1 LAYER
of the 39-SampleCNN model pre-trained with MSD.

3.1.8 Contribution Summary

In this article, we extend our previously proposed SampleCNN for music classi-

fication. Through the experiments, we found that downsampling music audio down to

8000 Hz does not significantly degrade performance but it saves training time. Sec-

ond, transfer learning experiments with multi-level and multi-scale technique showed

state-of-the-art results on most of the datasets we tested. Finally, we visualized the

spectrum of the learned filters for each sampling rate and found that the SampleCNN

model is actively focusing on (or zoom in on) important low-frequency bands. As

future work, we will analyze why the sample-level architecture works well without

input normalization and nonlinear function that compresses the amplitude, which are

important when we use spectrogram as input. Also, we will investigate different filter

visualization techniques to interpret the hierarchically-learned filters better.
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3.2 Extensions to More Building Blocks and Audio Clas-
sification Tasks

Music, speech, and acoustic scene sound are often handled separately in the audio

domain because of their different signal characteristics. However, as the image domain

grows rapidly by versatile image classification models, it is necessary to study exten-

sible classification models in the audio domain as well. In this study, we approach

this problem using two types of sample-level deep convolutional neural networks that

take raw waveforms as input and uses filters with small granularity. One is a ba-

sic model that consists of convolution and pooling layers. The other is an improved

model that additionally has residual connections, squeeze-and-excitation modules and

multi-level concatenation. We show that the sample-level models reach state-of-the-

art performance levels for the three different categories of sound. Also, we visualize

the filters along layers and compare the characteristics of learned filters.

3.2.1 Problem

Broadly speaking, audio classification tasks are divided into three sub-domains

including music classification, speech recognition (particularly for the acoustic model),

and acoustic scene classification. However, input audio features and models for each

sub-domain task are usually different due to the different signal characteristics.

Recent advances in deep learning have encouraged a single audio classification

model to be applied to many cross-domain tasks. For example, Lee et. al. proposed

Convolutional Deep Belief Networks (CDBN) and applied it to phoneme classifica-

tion, speaker identification, music genre and artist classification [51]. Adavanne et. al.

used a Convolutional Recurrent Neural Network (CRNN) model for sound event de-

tection [52], bird audio classification [53] and music emotion recognition [54]. How-

ever, the majority of the audio classification models use a 2D time-frequency rep-

resentation as input, which involves different choices of time-frequency resolution,

filter-bank size and magnitude compression.

This issue can be solved by a waveform-based model that directly takes raw in-

put signals. Recently, Dieleman and Schrauwen used raw waveforms as input of CNN
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models for music auto-tagging task [12]. Sainath et. al. used Convolutional Long

short-term memory Deep Neural Network (CLDNN) for speech recognition [18]. Dai

et. al. used Deep Convolutional Neural Networks (DCNN) with residual connec-

tions for environmental sound recognition [23]. All of them used frame-level filters

(typically several hundred samples long) in the first convolutional layer which were

carefully designed to handle their target problems. In this type of architectures, the

filters in the bottom layer should learn all possible phase variations of periodic wave-

forms which are likely to be prevalent in audio signals. However, the phase variations

within a frame (i.e. time shift of periodic waveforms) are actually removed in the

spectrogram.

This problem is analogous to translation invariance in the image domain. Con-

sidering that filter size is typically small in the image domain, even 3⇥3 in the VGG

model [26], we investigated the possibility of stacking very small-size filters from the

bottom layer of DCNN for raw audio waveforms with max-pooling layers. The results

on music auto-tagging [25] and sound event detection [55] showed that the VGG-style

1-D CNN models are highly effective. We term this model as SampleCNN.

We enhanced the SampleCNN model by adding residual connections, squeeze-

and-excitation modules and multi-level feature concatenation for music auto-tagging

[56]. The residual connection makes gradient propagation more fluent, allowing train-

ing deeper networks [57]. The Squeeze-and-Excitation (SE) module recalibrates filter-

wise feature responses [58]. The multi-level feature concatenation takes different

abstraction levels of classification labels into account [27]. We term this model as

ReSE-2-Multi.

In this study, we show that the sample-level CNN models are effective for three

datasets from different audio domains. Furthermore, we visualize hierarchically learned

filters for each dataset in the waveform-based model to explain how they process sound

differently.

3.2.2 Models

Figure 3.6 shows the structures of the two sample-level models. 2 or 3 sample-

size 1D filters and poolings are used in all convolutional layers. In SampleCNN,

42



Block 2

Block 1

Block 3

1D
 convolutional blocks

m
ul

ti
-l

ev
el

 

global m
ax poolinggl

ob
al

 m
ax

 p
oo

li
ng

Conv1D

BatchNorm

MaxPool
relu

relu

relu

sigmoid

relu

T×C

1×C

1×αC

1×C
T×C

T×C

Conv1D

BatchNorm

Dropout

Conv1D

BatchNorm

GlobalAvgPool

FC

FC

Scale

MaxPool

...

Layer 2

Layer 1

Layer 3

1D
 convolutional blocks

...

(a) SampleCNN (b) ReSE-2-Multi

Figure 3.6: SampleCNN and ReSE-2-Multi models.

convolutional layer, batch normalization layer and max-pooling layer are stacked as

shown in Figure 3.6 (a). The detailed description can be found in [25].

In ReSE-2-Multi, we add a residual connection and an SE module onto the Sam-

pleCNN building block as shown in Figure 3.6 (b). The SE path recalibrates feature

maps through two operations. One is squeeze operation that aggregates a global tem-

poral information into filter-wise statistics using global average pooling. The opera-

tion reduces the temporal dimensionality (T ) to one. The other is excitation opera-

tion that adaptively recalibrates each filter map using the filter-wise statistics from the

squeeze operation and a simple gating mechanism. The gating consists of two fully-

connected (FC) layers that compute nonlinear interactions among filters. Then, the

original outputs from the basic block are rescaled by filter-wise multiplication with

the sigmoid activation of the second FC layer of the SE path. We also added residual

connections to train a deeper model. The digit in the model name, ReSE-2-Multi, indi-

cates the number of convolution layers in one building block. Finally, we concatenate

three hidden layers to take account of different levels of abstraction.
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Music Speech Scene sound

Dataset

MagnaTagATune (MTAT) [34] Speech Commands Dataset [59, 60] DCASE 2017 Task 4 [61]

(TensorFlow Speech Recognition Challenge) (subtask A)

Task Music auto-tagging Speech command recognition Acoustic scene tagging

# of classes 50 tags 10 commands + ”silence” + ”unknown” 17 sound events

(31 classes in training / 12 classes in testing)

Labels Multi-label Multi-class Multi-label

Sampling rate 22,050Hz 16,000Hz 44,100Hz

Dataset split 15,244 / 1529 / 4332 57,929 / 6798 / 30% of 158,538 45,313 / 5859 / 488

(train/valid/test) (public leaderboard test setting) (development set)

Duration 29 seconds 1 second 10 seconds

Description Collected using the Single-word speaking commands, Subset of AudioSet [62],

TagATune game and music rather than conversational sentences YouTube clips focusing on

from Magnatune. vehicle and warning sounds.

Model

(resampled to 16,000Hz) (resampled to 16,000Hz)

Input size 39,366 samples, 2.46 sec 16,000 samples, 1 sec 19,683 samples, 1.23 sec

# of segments 12 segments per clip 1 segments per clip 9 segments per clip

# of blocks 9 blocks 8 blocks 8 blocks

Results

AUC Accuracy F-score (instance-based)

SampleCNN 0.9033 84% 38.9%

ReSE-2+Multi 0.9091 86% 45.1%

State-of-the-art 0.9113 [56] 88% (as of Nov 29, 2017) [60] 57.7% [63]

Table 3.7: Description of the three datasets, models and results.

3.2.3 Datasets and Results

We validate the effectiveness of the proposed models on music auto-tagging,

speech command recognition and acoustic scene tagging. The details about the datasets

for the tasks are summarized in Table 3.7. Note that we resampled all audio samples

to 16,000Hz in order to verify how extensible the models are for the three sub-domain

of audio tasks in the same condition. However, we configured the input size of the

models for each dataset to commonly used size in each domain. Then, we set the

number of building blocks according to the input size of the models. We averaged the

prediction score for all segments of one clip in testing phase if the input size of the

model is shorter than the duration of the clip.

Table 3.7 compares the results from the two sample-level CNN models. The
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performances are reported using commonly used evaluation metrics for each task.

We also compare them to state-of-the-art performance on each dataset. In general, the

ReSE-2-Multi model shows close performance to the state-of-the-art results except for

the DCASE task. However, in [63], they used data balancing, ensemble networks and

auto thresholding techniques. Without those techniques, they report that their CRNN

model achieved 42.0% F-score value which is lower than our result with ReSE-2-

Multi. Also, for the music auto-tagging task on MTAT, the state-of-the-art result was

achieved by the ReSE-2-Multi model. In this case, the performance degradation is

seen to be caused by downsampling to 16,000Hz.

3.2.4 Filter Visualizations

Visualizing the filters at each layer allows better understanding of representation

learning in the hierarchical networks. Since both models yielded similar patterns of

learned filters at each layer, we visualize them only for the sampleCNN model. Figure

3.7 shows the filters obtained by an activation maximization method [48]. To show

the patterns more clearly, we visualized them as spectrum in the frequency domain

and sorted them by the frequency with the peak magnitude [25]. In this case, we set

the size of the initial random noise to 729 (= 36) samples, so that the estimated filters

have typical frame-sized shape which will make the spectrum clearer. Also, for the

first 6 layers we only used 3-sized filters and sub-sampling layers. Thus, the temporal

dimension of the 6th layer output becomes one in this configuration. For other layers,

we averaged remaining temporal dimension so as to make a single activation loss

value. Finally, we conducted log-based magnitude compression on the spectrum.

From the figure, we can first find that they are sensitive to log-scaled frequency

along the layers, such as mel-frequency spectrogram that is widely used in audio

classification tasks. Second, when comparing acoustic scene sound with the other

domains, the learned filters tend to have more low-frequency concentration and less

complex patterns. This is probably because the DCASE task 4 dataset is made up of

simple traffic and warning sounds. Finally, between music and speech, we can observe

that more filters explain low-frequency content in music than speech.
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3.2.5 Contribution Summary

In this paper, we evaluated the two sample-level CNN models on three datasets.

The results show the possibility that they can be applied to different audio domains as

a true end-to-end model. As future work, we will investigate more filter visualization

techniques to have better understanding of the models.
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Figure 3.7: The spectrum of learned filter estimates for the three datasets in Sam-
pleCNN. They are sorted by the frequency with the peak magnitude. The x-axis rep-
resents the index of the filters and the y-axis represents the frequency (ranging from
0 to 8000Hz for all figures). The visualizations were obtained using a gradient ascent
method that finds the input waveform that maximizes the activation of a filter at each
layer.
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Chapter 4. Representation Learning of Music Using Objective
Metadata

In this chapter, we propose to use objective music metadata to train similarity-

based deep learning model instead of tag labels. The objective metadata has advan-

tages in terms of scalability and cost. Then, more music metadata are used to train the

models such as album and track information. By exploring the use of different simi-

larity notions to train the model, we can see the effects and characteristics of different

similarity notions.

4.1 Representation Learning of Music Using Artist La-
bels

In music domain, feature learning has been conducted mainly in two ways: unsu-

pervised learning based on sparse representations or supervised learning by semantic

labels such as music genre. However, finding discriminative features in an unsuper-

vised way is challenging and supervised feature learning using semantic labels may

involve noisy or expensive annotation. In this paper, we present a supervised feature

learning approach using artist labels annotated in every single track as objective meta

data. We propose two deep convolutional neural networks (DCNN) to learn the deep

artist features. One is a plain DCNN trained with the whole artist labels simultane-

ously, and the other is a Siamese DCNN trained with a subset of the artist labels based

on the artist identity. We apply the trained models to music classification and retrieval

tasks in transfer learning settings. The results show that our approach is comparable to

previous state-of-the-art methods, indicating that the proposed approach captures gen-

eral music audio features as much as the models learned with semantic labels. Also,

we discuss the advantages and disadvantages of the two models.
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4.1.1 Problem

Representation learning or feature learning has been actively explored in recent

years as an alternative to feature engineering [64]. The data-driven approach, partic-

ularly using deep neural networks, has been applied to the area of music information

retrieval (MIR) as well [65]. In this paper, we propose a novel audio feature learning

method using deep convolutional neural networks and artist labels.

Early feature learning approaches are mainly based on unsupervised learning al-

gorithms. Lee et al. used convolutional deep belief network to learn structured acous-

tic patterns from spectrogram [51]. They showed that the learned features achieve

higher performance than Mel-Frequency Cepstral Coefficients (MFCC) in genre and

artist classification. Since then, researchers have applied various unsupervised learn-

ing algorithms such as sparse coding [5, 66–68], K-means [5, 38, 69] and restricted

Boltzmann machine [5,70]. Most of them focused on learning a meaningful dictionary

on spectrogram by exploiting sparsity. While these unsupervised learning approaches

are promising in that it can exploit abundant unlabeled audio data, most of them are

limited to single or dual layers, which are not sufficient to represent complicated fea-

ture hierarchy in music.

On the other hand, supervised feature learning has been progressively more ex-

plored. An early approach was mapping a single frame of spectrogram to genre or

mood labels via pre-trained deep neural networks and using the hidden-unit activa-

tions as audio features [71, 72]. More recently, this approach was handled in the con-

text of transfer learning using deep convolutional neural networks (DCNN) [73, 74].

Leveraging large-scaled datasets and recent advances in deep learning, they showed

that the hierarchically learned features can be effective for diverse music classification

tasks. However, the semantic labels that they use such as genre, mood or other timbre

descriptions tend to be noisy as they are sometimes ambiguous to annotate or tagged

from the crowd. Also, high-quality annotation by music experts is known to be highly

time-consuming and expensive.

Meanwhile, artist labels are the meta data annotated to songs naturally from the

album release. They are objective information with no disagreement. Furthermore,

considering every artist has his/her own style of music, artist labels may be regarded
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(a) The Basic Model

(b) The Siamese Model

Figure 4.1: The proposed architectures for the model using artist labels.

as terms that describe diverse styles of music. Thus, if we have a model that can

discriminate different artists from music, the model can be assumed to explain various

characteristics of the music.

In this paper, we verify the hypothesis using two DCNN models that are trained

to identify the artist from an audio track. One is the basic DCNN model where the

softmax output units corresponds to each of artist. The other is the Siamese DCNN

trained with a subset of the artist labels to mitigate the excessive size of the output

layer in the plain DCNN when a large-scale dataset is used. After training the two

models, we regard them as a feature extractor and apply artist features to three different

genre datasets in two experiment settings. First, we directly find similar songs using
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the artist features and K-nearest neighbors. Second, we conduct transfer learning to

further adapter the features to each of the datasets. The results show that proposed

approach captures useful features for unseen audio datasets and the propose models

are comparable to those trained with semantic labels in performance. In addition, we

discuss the advantages and disadvantages of the two proposed DCNN models.

4.1.2 Learning Models

Figure 4.1 shows the two proposed DCNN models to learn audio features using

artist labels. The basic model is trained as a standard classification problem. The

Siamese model is trained using pair-wise similarity between an anchor artist and other

artists. In this section, we describe them in detail.

Basic Model

This is a widely used 1D-CNN model for music classification [8, 12, 31, 74].

The model uses mel-spectrogram with 128 bins in the input layer. We configured the

DCNN such that one-dimensional convolution layers slide over only a single tempo-

ral dimension. The model is composed of 5 convolution and max pooling layers as

illustrated in Figure 4.1(a). Batch normalization [37] and rectified linear unit (ReLU)

activation layer are used after every convolution layer. Finally, we used categorical

cross entropy loss in the prediction layer. We train the model to classify artists instead

of semantic labels used in many music classification tasks. For example, if the number

of artists used is 1,000, this becomes a classification problem that identifies one of the

1,000 artists. After training, the extracted 256-dimensional feature vector in the last

hidden layer is used as the final audio feature learned using artist labels. Since this is

the representation from which the identity is predicted by the linear softmax classifier,

we can regard it as the highest-level artist feature.

Siamese Model

While the basic model is simple to train, it has two main limitations. One is

that the output layer can be excessively large if the dataset has numerous artists. For

example, if a dataset has 10,000 artists and the last hidden layer size is 100, the number
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of parameters to learn in the last weight matrix will reach 1M. Second, whenever new

artists are added to the dataset, the model must be trained again entirely. We solve the

limitations using the Siamese DCNN model.

A Siamese neural network consists of twin networks that share weights and con-

figuration. It then provides unique inputs to the network and optimizes similarity

scores [75–77]. This architecture can be extended to use both positive and negative

examples at one optimization step. It is set up to take three examples: anchor item

(query song), positive item (relevant song to the query) and negative item (different

song to the query). This model is often called triplet networks and has been suc-

cessfully applied to music metric learning when the relative similarity scores of song

triplets are available [78]. This model can be further extended to use several negative

samples instead of just one negative in the triplet network. This technique is called

negative sampling and has been popularly used in word embedding [15] and latent

semantic model [79]. By using this technique, they could effectively approximate the

full softmax function when the output class is extremely large (i.e. 10,000 classes).

We approximate the full softmax output in the basic model with the Siamese

neural networks using negative sampling technique. Regarding the artist labels, we

set up the negative sampling by treating identical artist’s song to the anchor song as

positive sample and other artists’ songs as negative samples. This method is illustrated

in Figure 4.1(b). Following [79], the relevance score between the anchor song feature

and other song feature is measured as:

R(A,O) = cos(yA, yO) =
y
T

A
yO

|yA||yO|
(4.1)

where yA and yO are the feature vectors of the anchor song and other song, respec-

tively.

Meanwhile, the choice of loss function is important in this setting. We tested

two loss functions. One is the softmax function with categorical cross-entropy loss

to maximize the positive relationships. The other is the max-margin hinge loss to

set only margins between positive and negative examples [80]. In our preliminary

experiments, the Siamese model with negative sampling was successfully trained only

with the max-margin loss function between the two objectives, which is defined as
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follows:

loss(A,O) =
X

O�

max[0,��R(A,O+) +R(A,O�)] (4.2)

where � is the margin, O+ and O
� denotes positive example and negative examples,

respectively. We also grid-searched the number of negative samples and the margin,

and finally set the number of negative samples to 4 and the margin value � to 0.4.

The shared audio model used in this approach is exactly the same configuration as the

basic model.

Compared Model

In order to verify the usefulness of the artist labels and the presented models, we

constructed another model that has the same architecture as the basic model but using

semantic tags. In this model, the output layer size corresponds to the number of the

tag labels. Hereafter, we categorize all of them into artist-label model and tag-label

model, and compare the performance.

4.1.3 Experiments

In this section, we describe source datasets to train the two artist-label models

and one tag-label model. We also introduce target datasets for evaluating the three

models. Finally, the training details are explained.

Source Tasks

All models are trained with the Million Song Dataset (MSD) [36] along with 30-

second 7digital1 preview clips. Artist labels are naturally annotated onto every song,

thus we simply used them. For the tag label, we used the Last.fm dataset augmented

on MSD. This dataset contains tag annotation that matches the ID of the MSD.
1https://www.7digital.com/
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Artist-label Model

The number of songs that belongs to each artist may be extremely skewed and

this can make fair comparison among the three models difficult. Thus, we selected 20

songs for each artist evenly and filtered out the artists who have less than this. Also,

we configured several sets of the artist lists to see the effect of the number of artists

on the model performances (500, 1,000, 2,000, 5,000 and 10,000 artists). We then

divided them into 15, 3 and 2 songs for training, validation and testing, respectively

for the sets contain less than 10,000 artists. For the 10,000 artist sets, we partitioned

them in 17, 1 and 2 songs because once the artists reach 10,000, the validation set

already become 10,000 songs even when we only use 1 song from each artist which is

already sufficient for validating the model performance. We also should note that the

testing set is actually not used in the whole experiments in this paper because we used

the source dataset only for training the models to use them as feature extractors. The

reason we filtered and split the data in this way is for future work2.

Tag-label Model

We used 5,000 artists set as a baseline experiment setting. This contains total

90,000 songs in the training and validation set with a split of 75,000 and 15,000.

We thus constructed the same size set for tagging dataset to compare the artist-label

models and the tag-label model. The tags and songs are first filtered in the same way

as the previous works [7, 74]. Among the list with the filtered top 50 used tags, we

randomly selected 90,000 songs and split them into the same size as the 5,000 artist

set.

Target Tasks

We used 3 different datasets for genre classification.

• GTZAN (fault-filtered version) [32,33]: 930 songs, 10 genres. We used a “fault-

filtered” version of GTZAN [33] where the dataset was divided to prevent artist

repetition in training/validation/test sets.
2All the data splits of the source tasks are available at the link for reproducible research https:

//github.com/jiyoungpark527/msd-artist-split.
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• FMA small [1]: 8,000 songs, 8 balanced genres.

• NAVER Music3 dataset with only Korean artists: 8,000 songs, 8 balanced gen-

res. We filtered songs with only have one genre to clarify the genre characteris-

tic.

Training Details

For the preprocessing, we computed the spectrogram using 1024 samples for FFT

with a Hanning window, 512 samples for hop size and 22050 Hz as sampling rate.

We then converted it to mel-spectrogram with 128 bins along with a log magnitude

compression.

We chose 3 seconds as a context window of the DCNN input after a set of experi-

ments to find an optimal length that works well in music classification task. Out of the

30-second long audio, we randomly extracted the context size audio and put them into

the networks as a single example. The input normalization was performed by dividing

standard deviation after subtracting mean value across the training data.

We optimized the loss using stochastic gradient descent with 0.9 Nesterov mo-

mentum with 1e�6 learning rate decay. Dropout 0.5 is applied to the output of the

last activation layer for all the models. We reduce the learning rate when a valid loss

has stopped decreasing with the initial learning rate 0.015 for the basic models (both

artist-label and tag-label) and 0.1 for the Siamese model. Zero-padding is applied to

each convolution layer to maintain its size.

Our system was implemented in Python 2.7, Keras 2.1.1 and Tensorflow-gpu

1.4.0 for the back-end of Keras. We used NVIDIA Tesla M40 GPU machines for

training our models. Code and models are available at the link for reproducible re-

search4.

4.1.4 Feature Evaluation

We apply the learned audio features to genre classification as a target task in two

different approaches: feature similarity-based retrieval and transfer learning. In this
3http://music.naver.com
4https://github.com/jongpillee/ismir2018-artist.
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section, we describe feature extraction and feature evaluation methods.

Feature Extraction Using the DCNN Models

In this work, the models are evaluated in three song-level genre classification

tasks. Thus, we divided 30-second audio clip into 10 segments to match up with

the model input size and the 256-dimension features from the last hidden layer are

averaged into a single song-level feature vector and used for the following tasks. For

the tasks that require song-to-song distances, cosine similarity is used to match up

with the Siamese model’s relevance score.

Feature Similarity-based Song Retrieval

We first evaluated the models using mean average precision (MAP) considering

genre labels as relevant items. After obtaining a ranked list for each song based on

cosine similarity, we measured the MAP as following:

AP =

P
k2rel precisionk

number of relevant items
(4.3)

MAP =

P
Q

q=1 AP (q)

Q
(4.4)

where Q is the number of queries. precisionk measures the fraction of correct items

among first k retrieved list.

The purpose of this experiment is to directly verify how similar feature vectors

with the same genre are in the learned feature space.

Transfer Learning

We classified audio examples using the k-nearest neighbors (k-NN) classifier and

linear softmax classifier. The evaluation metric for this experiment is classification

accuracy. We first classified audio examples using k-NN to classify the input audio

into the largest number of genres among k nearest to features from the training set.

The number of k is set to 20 in this experiment. This method can be regarded as a

similarity-based classification. We also classified audio using a linear softmax clas-
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MAP
Artist-label

Basic Model

Artist-label

Siamese Model

Tag-label

Model

GTZAN

(fault-filtered)
0.4968 0.5510 0.5508

FMA small 0.2441 0.3203 0.3019

NAVER Korean 0.3152 0.3577 0.3576

Table 4.1: MAP results on feature similarity-based retrieval.

KNN
Artist-label

Basic Model

Artist-label

Siamese Model

Tag-label

Model

GTZAN

(fault-filtered)
0.6655 0.6966 0.6759

FMA small 0.5269 0.5732 0.5332

NAVER Korean 0.6671 0.6393 0.6898

Table 4.2: KNN similarity-based classification accuracy.

Linear Softmax
Artist-label

Basic Model

Artist-label

Siamese Model

Tag-label

Model

GTZAN

(fault-filtered)
0.6721 0.6993 0.7072

FMA small 0.5791 0.5483 0.5641

NAVER Korean 0.6696 0.6623 0.6755

Table 4.3: Classification accuracy of a linear softmax.

sifier. The purpose of this experiment is to verify how much the audio features of

unseen datasets are linearly separable in the learned feature space.
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Figure 4.2: MAP results with regard to different number of artists in the feature mod-
els.

Figure 4.3: Genre classification accuracy using k-NN with regard to different number
of artists in the feature models.

Figure 4.4: Genre classification accuracy using linear softmax with regard to different
number of artists in the feature models.

4.1.5 Results and Discussion

Tag-label Model vs. Artist-label Model

We first compare the artist-label models to the tag-label model when they are

trained with the same dataset size (90,000 songs). The results are shown in Table

4.1, 4.2 and 4.3. In feature similarity-based retrieval using MAP (Table 4.1), the

artist-based Siamese model outperforms the rest on all target datasets. In the genre

classification tasks (Table 4.2 and 4.3), Tag-label model works slightly better than the

rest on some datasets and the trend becomes stronger in the classification using the

linear softmax. Considering that the source task in the tag-based model (trained with

the Last.fm tags) contains genre labels mainly, this result may attribute to the similarity

58



of labels in both source and target tasks. Therefore, we can draw two conclusions from

this experiment. First, the artist-label model is more effective in similarity-based tasks

(4.1 and 4.2) when it is trained with the proposed Siamese networks, and thus it may be

more useful for music retrieval. Second, the semantic-based model is more effective in

genre or other semantic label tasks and thus it may be more useful for human-friendly

music content organization.

Basic Model vs. Siamese Model

Now we focus on the comparison of the two artist-label models. From Table 4.1,

4.2 and 4.3, we can see that the Siamese model generally outperforms the basic model.

However, the difference become attenuated in classification tasks and the Siamese

model is even worse on some datasets. Among them, it is notable that the Siamese

model is significantly worse than the basic model on the NAVER Music dataset in

the genre classification using k-NN even though they are based on feature similarity.

We dissected the result to see whether it is related to the cultural difference between

the training data (MSD, mostly Western) and the target data (the NAVER set, only

Korean). Figure 4.5 shows the detailed classification accuracy for each genre of the

NAVER dataset. In three genres, ‘Trot’,‘K-pop Ballad’ and ‘Kids’ that do not exist in

the training dataset, we can see that the basic model outperforms the Siamese model

whereas the results are opposite in the other genres. This indicates that the basic

model is more robust to unseen genres of music. On the other hand, the Siamese

model slightly over-fits to the training set, although it effectively captures the artist

features.

Effect of the Number of Artists

We further analyze the artist-label models by investigating how the number of

artists in training the DCNN affects the performance. Figure 4.2, 4.3 and 4.4 are

the results that show similarity-based retrieval (MAP) and genre classification (accu-

racy) using k-NN and linear softmax, respectively, according to the increasing number

of training artists. They show that the performance is generally proportional to the

number of artists but the trends are quite different between the two models. In the
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Figure 4.5: The classification results of each genre for the NAVER dataset with only
Korean music.

Models
GTZAN

(fault-filtered)
FMA small

2-D CNN [33] 0.6320 -

Temporal features [43] 0.6590 -

Multi-level Multi-scale [74] 0.7200 -

SVM [1] - 0.5482†

Artist-label Basic model 0.7076 0.5687

Artist-label Siamese model 0.7203 0.5673

Table 4.4: Comparison with previous state-of-the-art models: classification accuracy
results. Linear softmax classifier is used and features are extracted from the artist-
label models trained with 10,000 artists. † This result was obtained using the provided
code and dataset in [1].

similarity-based retrieval, the MAP of the Siamese model is significantly higher than

that of the basic model when the number of artists is greater than 1,000. Also, as the

number of artists increases, the MAP of the Siamese model consistently goes up with

a slight lower speed whereas that of the basic model saturates at 2,000 or 5,000 artists.

On the other hand, the performance gap changes in the two classification tasks. On the

GTZAN dataset, while the basic model is better for 500 and 1,000 artists, the Siamese

model reverses it for 2,000 and more artists. On the NAVER dataset, the basic model is

consistently better. On the FMA small, the results are mixed in two classifiers. Again,

the results may be explained by our interpretation of the models in Section 4.1.5. In
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summary, the Siamese model seems to work better in similarity-based tasks and the

basic model is more robust to different genres of music. In addition, the Siamese

model is more capable of being trained with a large number of artists.

Comparison with State-of-the-arts

The effectiveness of artist labels is also supported by comparison with previous

state-of-the-art models in Table 4.4. For this result, we report two artist-label models

trained with 10,000 artists using linear softmax classifier. In this table, we can see that

the proposed models are comparable to the previous state-of-the-art methods.

4.1.6 Visualization

We visualize the extracted feature to provide better insight on the discriminative

power of learned features using artist labels. We used the DCNN trained to classify

5,000 artists as a feature extractor. After collecting the feature vectors, we embedded

them into 2-dimensional vectors using t-distributed stochastic neighbor embedding

(t-SNE).

For artist visualization, we collect a subset of MSD (apart from the training data

for the DCNN) from well-known artists. Figure 4.6 shows that artists’ songs are ap-

propriately distributed based on genre, vocal style and gender. For example, artists

with similar genre of music are closely located and female pop singers are close to

each other except Maria Callas who is a classical opera singer. Interestingly, some

songs by Michael Jackson are close to female vocals because of his distinctive high-

pitched tone.

Figure 4.7 shows the visualization of features extracted from the GTZAN dataset.

Even though the DCNN was trained to discriminate artist labels, they are well clus-

tered by genre. Also, we can observe that some genres such as disco, rock and hip-hop

are divided into two or more groups that might belong to different sub-genres.

4.1.7 Contribution Summary and Future work

In this work, we presented the models to learn audio feature representation using

artist labels instead of semantic labels. We compared two artist-label models and one
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Figure 4.6: Feature visualization by artist. Total 22 artists are used and, among them,
15 artists are represented in color.

tag-label model. The first is a basic DCNN consisting of a softmax output layer to

predict which artist they belong to out of all artists used. The second is a Siamese-

style architecture that maximizes the relative similarity score between a small subset

of the artist labels based on the artist identity. The last is a model optimized using tag

labels with the same architecture as the first model. After the models are trained, we

used them as feature extractors and validated the models on song retrieval and genre

classification tasks on three different datasets. Three interesting results were found

during the experiments. First, the artist-label models, particularly the Siamese model,

is comparable to or outperform the tag-label model. This indicates that the cost-free

artist-label is as effective as the expensive and possibly noisy tag-label. Second, the

Siamese model showed the best performances on song retrieval task in all datasets

tested. This can indicate that the pair-wise relevance score loss in the Siamese model

helps the feature similarity-based search. Third, the use of a large number of artists

increases the model performance. This result is also useful because the artists can be

easily increased to a very large number.

As future work, we will investigate the artist-label Siamese model more thor-

oughly. First, we plan to investigate advanced audio model architecture and diverse

loss and pair-wise relevance score functions. Second, the model can easily be re-

trained using new added artists because the model does not have fixed output layer.

62



Figure 4.7: Feature visualization by genre. Total 10 genres from the GTZAN dataset
are used.

This property will be evaluated using cross-cultural data or using extremely small data

(i.e. one-shot learning [76]).

4.2 Representation Learning of Music using Artist, Al-
bum, and Track Information

Supervised music representation learning has been performed mainly using se-

mantic labels such as music genres. However, annotating music with semantic labels

requires time and cost. In this work, we investigate the use of factual metadata such

as artist, album, and track information, which are naturally annotated to songs, for

supervised music representation learning. The results show that each of the meta-

data has individual concept characteristics, and using them jointly improves overall

performance.

4.2.1 Problem

Representation learning of music has been recently performed by supervised deep

learning using semantic labels such as genres, moods and instruments [27, 73]. How-

ever, annotating music with such semantic labels requires significant time and cost
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and the labels are often ambiguous, resulting in disagreement among annotators [81].

Meanwhile, metadata such as artist labels require no cost and they are factual infor-

mation with no ambiguity. We recently investigated the possibility of using artist

information for representation learning of music and evaluated it in transfer learning

settings [82]. The results showed that the learned representation is comparable to those

using the semantic labels. In this work, we extend the use of music metadata to album

and track information, which are more specific levels than the artist information. We

use a similarity-based learning model following the previous work and also report the

effects of the number of negative samples and training samples.

Anchor

Shared
CNN
Layers

Cosine Sim.

Margin Hinge Loss

Artist Loss

Total Loss

Album Loss

Track Loss

Positive 
Sample

Negative 
Samples

(Sampling based on concept similarity)

Shared
CNN
Layers

Shared
CNN
Layers

Figure 4.8: Joint learning model using artist, album, and track information.
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Learned
concept

Artist Album Track
Artist

+Album
+Track

Artist 0.680 0.634 0.539 0.686
Album 0.732 0.822 0.653 0.763
Track 0.922 0.958 0.971 0.945

Table 4.5: Hold-out positive and negative sample prediction.

4.2.2 Models

Figure 4.8 illustrates the overview of representation learning model using artist,

album, and track information. Following the previous work, we use a Siamese-style

Convolutional Neural Network (CNN) with multiple negative samples5. We build one

large model that jointly learns artist, album, and track information and three single

models that learns each of artist, album, and track information separately for compar-

ison. The single model basically takes anchor sample, positive sample, and negative

samples based on the similarity notion. For example, in the artist similarity concept,

positive and negative samples are selected based on whether the sample is from the

same artist as the anchor sample. We should note that the model takes a segment of

audio (e.g. 3 second long), not the whole chunk of the song audio. Thus, in the track

similarity concept, positive and negative samples are chosen based on whether the

sample segment is from the same track as the anchor segment. Finally, we construct

a joint learning model by simply adding three loss functions from the three similarity

concepts, and share model parameters for all of them.
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Learned
concept

genres
(baseline)

Artist Album Track
Artist

+Album
+Track

GTZAN 0.547 0.724 0.652 0.564 0.745
FMA small 0.533 0.598 0.560 0.463 0.593

NAVER Korean 0.720 0.662 0.641 0.549 0.663

Table 4.6: Transfer learning experiment. Baseline results are generated by performing
genre classification directly without transfer learning.

Number of
Negative Samples

1 2 4 8 16

GTZAN 0.665 0.663 0.681 0.702 0.711
FMA small 0.544 0.535 0.568 0.573 0.578

NAVER Korean 0.643 0.634 0.658 0.676 0.673

Table 4.7: The effect of the number of negative samples. The model is trained with
1000 artists, 2000 albums, and its related track concepts.

4.2.3 Experiments and Evaluations

The four models are trained with Million Song Dataset (MSD) and its artist and

album metadata [36]. We first build two splits based on each artist and album infor-

mation. The artist split is the same as the previous work, which has 20 songs for each

artist. For the album split, we selected 10 songs for each album and used twice as

many albums to match the number of training samples of artist. Then, 10 songs of

one album are divided into 8 songs, 1 song, and 1 song for training, validation and

testing. The artist split is twice these numbers. For the validation sampling of artist or
5In this work, we used twice the number of filters for all layers.
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Number of
Training Artists

500 1000 2000 5000 10000

GTZAN 0.638 0.681 0.706 0.745 0.755
FMA small 0.517 0.568 0.588 0.593 0.603

NAVER Korean 0.636 0.658 0.668 0.663 0.686

Table 4.8: The effect of the number of training samples. The model is trained with 4
negative samples with artist, album, and track concepts. The number of albums used
is twice the number of artists.

album concept, the positive sample is selected from the training set and the negative

samples are chosen from the validation set based on the validation anchor’s concept.

For the track concept, it basically follows the artist split, and the positive sample for

the validation sampling is chosen from the other part of the anchor song.

The evaluation is conducted in two ways: 1) hold-out positive and negative sam-

ple prediction and 2) transfer learning experiment. The hold-out positive and negative

sample prediction was designed to see how well the models distinguish each concept.

The evaluation is conducted on the test set of the above splits. For the artist and

album concept, the positive sample is selected from the validation set and the nega-

tive samples are from test set based on the anchor’s concept. In this evaluation, the

random guess is 20% when the model uses 4 negative samples. The transfer learn-

ing experiment is performed on three external genre classification datasets including

GTZAN (a fault-filtered version) [32, 33], FMA small [1], and NAVER Korean [82].

In this experiment, the learned representation is extracted and injected into a linear

softmax classifier. This experiment was designed to see the generalization ability of

the learned representations. For both evaluations, we used a model trained with 5000

artists (or/and 10000 albums) with 4 negative samples. After grid search, the mar-

gin values of loss function were set to 0.4, 0.25, and 0.1 for artist, album, and track

concepts, respectively.
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4.2.4 Results

The result of hold-out positive and negative sample prediction is shown in Table

4.5. We can see that each of the models performs best when the concept matches

between the training set and test set. Also, the jointly learned model achieves good

performance for all concepts.

The transfer learning experiment result is shown in Table 4.6. The artist model

shows the best performance among the three single concept models, followed by the

album model. This is probably because the genre classification task is more similar

to the artist concept discrimination than album or track. The jointly learned model

slightly outperforms the artist model. Finally, we included the baseline results ob-

tained by performing genre classification directly without transfer learning. The re-

sults show that transfer learning using large music corpora with the factual metadata

is highly effective in the GTZAN and FMA datasets, but not in NAVER dataset. This

was due to the cross-cultural differences between the source and target datasets when

looking closely at class-wise performances.

The effects of the number of negative samples and the number of training samples

are shown in Table 4.7 and Table 4.8, respectively. We can see that increasing the

number of negative samples and the number of training songs improves the model

performance as expected.
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Chapter 5. Disentangled Multidimensional Music Similarity

In this chapter, we opens up two new music search methdos which are query-by-

attribute and query-by-prototype. To do that, we adopt Conditional Similarity Net-

works (CSN) to music similarity learning, and the concept of Prototypical Networks

to music search applications. In addition, we propose a unified framework for music

representation learning.

5.1 Metric Learning-based Approach

Music similarity search is useful for a variety of creative tasks such as replacing

one music recording with another recording with a similar “feel”, a common task in

video editing. For this task, it is typically necessary to define a similarity metric to

compare one recording to another. Music similarity, however, is hard to define and

depends on multiple simultaneous notions of similarity (i.e. genre, mood, instrument,

tempo). While prior work ignore this issue, we embrace this idea and introduce the

concept of multidimensional similarity and unify both global and specialized similar-

ity metrics into a single, semantically disentangled multidimensional similarity met-

ric. To do so, we adapt a variant of deep metric learning called conditional similarity

networks to the audio domain and extend it using track-based information to control

the specificity of our model. We evaluate our method and show that our single, mul-

tidimensional model outperforms both specialized similarity spaces and alternative

baselines. We also run a user-study and show that our approach is favored by human

annotators as well.

5.1.1 Problem

Traditional music search methods such as those available on streaming services

and online music repositories use text-based metadata (e.g. song, artist, album, and/or

semantic tags) for music retrieval. However, there are scenarios where music metadata

is either unavailable or insufficient: a concrete example is what we shall refer to as
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Figure 5.1: An illustration of multiple dimensions of music similarity. Letters (A,
B, C) denote different music recordings, while lines denote different dimensions of
similarity.

the “music replacement” problem, where a user wishes to replace one music record-

ing with another recording that has a similar “feel”, a common use case e.g. in video

editing. Describing the desired musical traits may be extremely hard to do with text,

but the user has an example of what they are searching for, and so query-by-example,

and more specifically content-based music similarity and retrieval, is an attractive so-

lution. While content-based music similarity has been studied extensively [2], it has

found limited application in music recommendation platforms, which rely most heav-

ily on interaction and metadata based collaborative filtering [3]. Such techniques are

not applicable, however to the music replacement scenario, where there may be little-

to-no interaction data, and a user’s past music replacement selections can have little

correlation with future replacement needs.

From a retrieval specificity perspective, music replacement is less specific than

music identification (fingerprinting), but more specific than tag-based retrieval (e.g. genre)

or than finding similar-sounding music for listening purposes [2, 4], since the prag-

matic goal of music replacement is to find songs which sound as close as possible to

a query without being identical.
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Content-based music similarity typically involves extracting a feature represen-

tation from audio recordings and computing the similarity (or distance) between them

using a metric or score function. Previous approaches include vector quantization [83],

linear metric learning [9,10,84], and, more recently, deep metric learning [85–87] us-

ing human similarity labels [78], artist labels [82], track labels [88], or tags in the

context of zero-shot learning [89]. A common limitation of these approaches is that

similarity is modeled as uni-dimensional, i.e. songs are modelled as similar or dissim-

ilar along a single global axis. In actuality, music is a multidimensional phenomenon,

and consequently there are various different dimensions along which songs can be

compared (e.g. timbre, rhythm, genre, mood, etc.), and songs can be simultaneously

similar along some dimensions, while different along others, as illustrated in Figure

5.1. It is also hard to determine precisely which dimensions people take into account

when rating songs for similarity, or how they weight the importance of these dimen-

sions. For this reason, from an application standpoint it can be beneficial to allow the

user to specify which musical dimensions they care about when searching-by-example

and how to weight their importance.

In this paper, we propose a deep disentangled metric learning method for learn-

ing a multidimensional music similarity space (embedding). We adapt Conditional

Similarity Networks [11], previously only applied to images, to the audio domain, and

employ a combination of user-generated tags and algorithmic estimates (i.e. tempo) to

train a disentangled embedding space composed of sub-spaces corresponding to sim-

ilarity along different musical dimensions: genre, mood, instrumentation and tempo.

Further, we propose a track-regularization technique to increase overall perceptual

similarity across all dimensions as judged by humans. We evaluate our approach

against several baselines, showing our proposed approach outperforms them both in

terms of global similarity and similarity along specific dimensions. To validate our

quantitative results, we run a user-study and show that our proposed approach is fa-

vored by human annotators as well.
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5.1.2 Learning Model

Metric learning with triplet loss

We use deep metric learning with a triplet loss as the basis for our learning model

[85,86]. On a high level, our model is presented with a triplet of samples, where one is

considered the “anchor” and the other two consist of a “positive” and a “negative”, and

the model is trained to map the samples into an embedding space where the “positive”

is closer to the “anchor” than the “negative”, as illustrated in Figure 5.2 (A).

Formally, we define training triplets as a set T = {ti}N
i=1, where each triplet ti =

{xi

a
, x

i

p
, x

i

n
|s(xa, xp) > s(xa, xn)}, xa is the anchor sample, xp is the positive sample,

xn is the negative sample, and s is the musical dimension along which similarity is

measured. Then, we define the triplet loss as:

L(t) = max{0, D(xa, xp)�D(xa, xn) +�}, (5.1)

where D(xi, xj) = ||f(xi) � f(xj)||2 is the euclidean distance between two audio

embeddings, � is a margin value to prevent trivial solutions, and f(·) is a nonlinear

embedding function or deep neural network that maps the audio input to the embed-

ding space. For a given set T and embedding function f(·), we use stochastic gradient

descent to update the network weights and minimize the loss.

Disentangling the embedding features

To jointly model multiple semantic dimensions of similarity within a single net-

work, we adapt the work of Veit et al. [11], which proposed the use of Conditional

Similarity Networks (CSN) [11] for attribute-based image retrieval. The method in-

troduces masking functions ms 2 Rd, which are applied to the embedding space of

size d. Each mask corresponds to a certain similarity dimension s (denoted “condi-

tion” in [11]), e.g. mood or tempo, and is used to activate or block disjoint regions of

the embedding space, as illustrated in Figure 5.2 (B).

Given a specific similarity dimension s, training triplets are defined as Ts =

{ti
s
}N
i=1, with each triplet given by:

t
i

s
= (xi

a
, x

i

p
, x

i

n
; s), (5.2)
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Figure 5.2: Our proposed approach. (A) Standard triplet-based deep metric model,
(B) conditional similarity masking, and (C) track regularization.

and the training set combining triplets sampled from all similarity dimensions is de-

fined as TS = {Ts}Ss=1. Consequently, we update the distance function to:

D(xi, xj; s) = ||f(xi)�ms � f(xj)�ms||2, (5.3)

such that the mask ms only passes through the subspace of embedding features corre-

sponding to similarity dimension s during training and � denotes Hadamard product.

Accordingly, the loss is updated to:

L(ts) = max{0, D(xa, xp;ms)�D(xa, xn;ms) +�}. (5.4)

Track regularization

As noted earlier, music replacement requires retrieved songs to sound as close

as possible to the query example. To this end, we propose to complement the afore-

mentioned multidimensional metric learning approach with a regularization technique

we refer to as “track regularization”. The approach involves sampling an additional

set of triplets solely based on the track (song) information: the anchor and positive

are both sampled from the same song, while the negative is sampled from a different
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song. While this sampling was used previously to learn high-specificity music simi-

larity directly [88], here we use it as a “similarity regularization” technique to enforce

a certain degree of consistency across the entire (multidimensional) embedding space.

With this regularization, our final loss is given by:

L(tc, tt) = L(tc) + �L(tt), (5.5)

where tc are all triplets sampled from the various music similarity dimensions cor-

responding to disjoint sub-embedding spaces, tt are triplets sampled using track in-

formation, and � allows us to control the trade-off between semantic similarity (low-

specificity) and overall track-based similarity (high specificity). Importantly, for track-

based triplets, we use a mask with a value of one for all feature dimensions, meaning

the regularization is applied to the complete embedding space to capture track similar-

ity across all musical dimensions. Alternatively, this can be thought of as not applying

any masking on the embedding space.

5.1.3 Experimental Design

Dataset and input features

For our experiments, we use the Million Song Dataset (MSD) [36]. Based on pre-

liminary user studies on music replacement, we identify four relevant musical dimen-

sions to consider: genre, mood, instrumentation, and tempo. To determine whether

two songs are similar along these dimensions, we use Last.FM tag annotations as-

sociated with MSD tracks which have been previously grouped into different cate-

gories [31], resulting in 28 genre tags, 12 mood tags, and 5 instrument tags. Since

the annotations lack tempo tags, we extract an algorithmic tempo estimate per track

using the Madmom Python library [90,91]. Two tracks are considered similar along a

certain musical dimension (genre, mood, instruments) if they share at least one tag in

that category, or are within 5 BPM of each other in the case of tempo. For track-based

triplets, we ensure there is no more than 50% overlap between the anchor and positive

samples. We split the data following [27], giving 201680, 11774, and 28435 samples

for the train, validation, and test sets, respectively.
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For training, we use 3-second excerpts represented as a log-scaled mel-spectrogram

S, extracted with librosa [92]. We use a window size of 23 ms with 50% overlap and

compute 128 mel-bands per frame with the following log-compression: log10(1+10⇤

S), resulting in input dimensions of 129 ⇥ 128 as in [82]. The representation is z-

score standardized using fixed mean and standard deviation values of 0.2 and 0.25,

respectively.

Model architecture and training parameters

For choosing the triplet network architecture, we ran preliminary experiments

with several state-of-the-art convolutional building blocks [93], including a basic conv-

batchnorm-maxpool block, ResNet [57], Squeeze-and-Excitation [94], and Inception [95].

Having identified the Inception block as the best option, we use the following model

architecture: we start with 64 convolutional filters with a 5⇥5 kernel followed by 2⇥2

strided max-pooling, followed by six Inception blocks each comprising a “naı̈ve” in-

ception module with stride 2 followed by another inception module with a final output

dimensionality of 256 [95]. We use ReLU nonlinearities for all layers, and apply L2

normalization to the embedding features prior to computing the distance [87].

Since our total embedding size is 256 and we consider four music similarity di-

mensions (genre, mood, instruments, tempo), each with a disjoint subspace of size

64. We also experimented with a trainable masking layer [11] (as opposed to fixed

disjoint masks), but found it did not lead to any significant improvement. Moreover,

using fixed masks has the added benefit of allowing us to weight each musical di-

mension independently post-hoc which, as noted earlier, is a desirable user interaction

paradigm. We use the Adam optimizer [96] for training. We initialize the learning rate

to 0.01 and reduce it by a factor of 5 when the validation loss does not decrease for 4

epochs, up to 5 times, after which we apply early stopping. The margin for the triplet

loss is set to 0.1. And, after empirically hearing the properties of similarity space, �

was set to 0.5 when track regularization is applied.
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Used space Embedding Features Genre Mood Instruments Tempo Overall

All-dimensions

MFCC-VQ 0.563 0.481 0.495 0.516 0.514
Track 0.611 0.595 0.531 0.534 0.568

Category 0.647 0.633 0.562 0.875 0.679
Category + track regularization 0.647 0.627 0.561 0.891 0.681

Category + disentanglement 0.708 0.717 0.657 0.783 0.716
Category + disentanglement + track regularization 0.693 0.704 0.626 0.836 0.715

Sub-dimensions
Set of specialized networks 0.708 0.619 0.603 0.942 0.718
Category + disentanglement 0.785 0.790 0.798 0.955 0.832

Category + disentanglement + track regularization 0.765 0.743 0.700 0.953 0.790

5mm

Table 5.1: Prediction accuracy of category-based (genre, mood, instruments, tempo)
triplets.

Embedding Features Track User

MFCC-VQ 0.833 0.654
Track 0.950 0.763

Category 0.975 0.766
Category + track regularization 0.980 0.740

Category + disentanglement 0.985 0.763
Category + disentanglement + track regularization 0.988 0.792

Table 5.2: Results on track-based and user-based triplets.

Evaluation metrics and user-study

For evaluation we use a set of held-out triplets sampled from the test set. We

sample 40,000 triplets per music dimension (genre, mood, instruments, tempo) as well

as 40,000 triplets based on track information. To simulate our application scenario, we

use triplets of full songs for evaluation, the only exception being track-based triplets,

where we stick to 3 second excerpts since the anchor and positive are sampled from the

same song and should not overlap by more than 50%. The embedding for a full song

is obtained by computing embedding frames from 3-second non-overlapping windows

and averaging them over the time dimension. Given a test triplet, a model is evaluated

by testing whether the embedding distance between the anchor and positive samples
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is smaller than the distance between the anchor and negative (score of 1), or greater

(score of 0). The scores for all triplets are averaged to obtain a final score between 0

(worst) and 1 (best).

To determine whether human subjects concur with the above quantitative evalu-

ation, we also randomly sampled 4,000 triplets from the test set and asked people to

annotate which track sounded more similar to the anchor (positive or negative) with-

out showing which was which. Each triplet was annotated by 5-12 people, resulting

in 39,440 human annotations. We then calculated the annotator agreement per triplet,

defined as the ratio between the majority vote and total number of annotations, and fil-

tered out triplets where the agreement was below 0.9, resulting in 879 high-agreement

human-annotated triplets. Since similarity judgements have a high degree of subjectiv-

ity, in this way, we can limit the scope of our human evaluation to triplets where there

is broad annotator agreement. Models are evaluated against these triplets as described

earlier, obtaining a score between 0–1 in terms of consistency with user ratings.

Baseline method

As a strong baseline, we implement a vector quantization method that has been

used for both similarity-based music retrieval and auto-tagging [9, 97]. We compute

13 MFCC coefficients and their first and second derivatives per frame for each track,

randomly select 2,500,000 frames from all tracks and cluster them using K-means

with K = 1024 to produce a dictionary [9]. Given the dictionary, a track embedding

is obtained by assigning each MFCC frame to its closest cluster and computing a

normalized histogram of cluster assignments. The distance between any two tracks is

then given by the Euclidean distance between their normalized histograms [9].

5.1.4 Results

In Table 5.1, we present the numerical results obtained for each of the four

held-out triplet sets corresponding to a music similarity dimension, as well as aggre-

gated scores over all four triplet sets (“Overall”). The “Used space” column indicates

which subset of the embedding space was used to compute the distance between pairs

of tracks, where “all dimensions” means all embedding features were used (f(x)),
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whereas “sub-dimensions” means only the subspace corresponding to the musical di-

mension (f(x) � ms) from which the test triplets were sampled was used. We com-

pare six models plus the baseline, specified in the “embedding features” column. The

“Track” model was trained on triplets sampled based on track-information only, the

“Category” model was trained on triplets sampled from the four music similarity di-

mensions (categories) of genre, mood, instruments and tempo, including both with

and without disentanglement (subspace masking) and track regularization. For dis-

entangled models, we include an additional baseline, “Set of specialized networks”,

which is comprised of four separate triplet-loss networks, each trained exclusively on

triplets sampled from one of the four musical dimensions.

We see that all deep metric learning models outperform the MFCC-VQ baseline.

More importantly, disentangling the embedding improves performance in almost all

cases, with our disentangled model trained on all triplets jointly (Category + disen-

tanglement) even outperforming the specialized networks trained separately on each

dimension.

As one might expect, track regularization decreases numerical performance on

each of the four triplet test sets, as it enforces all embedding subspaces to respect a

global notion of track similarity. The key question is how does it affect model perfor-

mance when compared against the human ratings obtained from our user study, pre-

sented in Table 5.2. As a sanity check, we start by evaluating our models against the

track-based triplet test-set, presented in the “Track” column. We see that, as expected,

track-regularization increases performance on this high-specificity set. Somewhat sur-

prisingly, training on category-sampled triplets outperforms training on track-sampled

triplets, with disentanglement increasing performance further. Next, we turn to the re-

sults obtained from the user study, presented in the “User” column. We see that our

proposed approach outperforms the baseline, and, as per our initial hypothesis, track

regularization increases the overall user agreement with our model’s similarity ratings

when training on category triplets with disentanglement.
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5.1.5 Contribution Summary

In this paper, we introduce a novel approach for deep metric learning of a dis-

entangled, multidimensional, music similarity space. We use Conditional Similarity

Networks trained on a combination of user tags and algorithmic estimates, and intro-

duce track regularization to control for retrieval specificity. Through a series of ex-

periments, including both a quantitative evaluation and a user study, we demonstrate

that our proposed approach outperforms several baselines, with per-dimension simi-

larity performance increasing due to the disentangling of the embedding space, and

agreement with human annotations increasing as a result of track regularization. Our

solution is particularly relevant to the music replacement problem, and opens the door

to novel interaction paradigms which permit the user to select which music dimen-

sions they care about for retrieval, how to weight their relative importance, and how to

balance subspace similarity versus high-specificity overall similarity. This approach

can further be extended to general audio similarity such as voice similarity based on

their speaker’s condition, phonation, or prosody. In the future, we plan to conduct

further user studies to determine human agreement when considering each musical

dimension in isolation, and evaluate the performance of our model against these rat-

ings. We also plan to explore and evaluate our proposed approach for multi-query

retrieval (query-by-multiple-examples) and mix-and-match scenarios where the user

is interested in finding songs whose characteristics match the subspaces of different

songs (e.g. the genre of example A with the tempo of example B).

5.2 Metric Learning vs Classification for Disentangled
Music Representation Learning

Deep representation learning offers a powerful paradigm for mapping input data

onto an organized embedding space and is useful for many music information retrieval

tasks. Two central methods for representation learning include deep metric learning

and classification, both having the same goal of learning a representation that can

generalize well across tasks. Along with generalization, the emerging concept of dis-

entangled representations is also of great interest, where multiple semantic concepts
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(e.g., genre, mood, instrumentation) are learned jointly but remain separable in the

learned representation space. In this paper we present a single representation learn-

ing framework that elucidates the relationship between metric learning, classification,

and disentanglement in a holistic manner. For this, we (1) outline past work on the

relationship between metric learning and classification, (2) extend this relationship

to multi-label data by exploring three different learning approaches and their disen-

tangled versions, and (3) evaluate all models on four tasks (training time, similarity

retrieval, auto-tagging, and triplet prediction). We find that classification-based mod-

els are generally advantageous for training time, similarity retrieval, and auto-tagging,

while deep metric learning exhibits better performance for triplet-prediction. Finally,

we show that our proposed approach yields state-of-the-art results for music auto-

tagging.

5.2.1 Problem

Learning a good representation, or embedding space, is a key goal in deep learn-

ing and is central to music classification and retrieval tasks. An important quality of

a good representation is its generalization capability, i.e., its applicability to a diverse

set of downstream tasks, including those relying on small datasets in a transfer learn-

ing setting [73, 82, 98]. While numerous representation learning methods have been

explored to date, two learning paradigms are particularly common: deep metric learn-

ing and classification-based representation learning. The former is based on deriving

similarity scores (or distances) between examples, while the latter is achieved via a

cross-entropy loss over similarity scores between example and class centroids.

While both paradigms share the goal of learning a generalizable representation,

the results from each approach are generally different. For example, a learned repre-

sentation optimized via a classification task may perform poorly on a similarity-search

task, and vice versa. While recent studies have elucidated the theoretical relationships

between these paradigms and validated them through experimental findings [99], these

developments have not been explored in the music domain. Furthermore, the rela-

tionship has not been explored for multi-label data, which is central to many music

information retrieval tasks.
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Figure 5.3: A disentangled music representation space. The green dot depicts a query
song, the black dots depict retrieval songs, the red and yellow dots depict centroids of
musical concepts, the gray arrows depict multidimensional axis, and the blue arrows
depict retrieval methods.

Beyond seeking a representation that generalizes across tasks, the emerging con-

cept of disentangled representations [100, 101] is of great interest for music applica-

tions. Music is often labeled with multiple semantic dimensions simultaneously (e.g.,

genre, mood, and instrumentation) and learning a representation that can capture this

structure is advantageous. We often need to search for music that is similar along a par-

ticular semantic dimension in one application (e.g., a music playlist with lighthearted

mood), while requiring music similar along a different semantic dimension for an-

other application (e.g., era for musicological analysis). Disentangled representations

allow us to address both problems with a single model, and were recently proposed

for audio-based music similarity search [102]. However, this study only explored dis-

entanglement via a single deep metric learning approach, and the applicability and

performance of more recent metric- and classification-based learning methods is yet
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to be explored.

In this paper, we present a unified representation learning framework that elu-

cidates the relationship between metric learning, classification, and disentanglement.

First, we outline past work on the relationship between metric learning and classifica-

tion. We then extend this relationship to multi-label and multi-concept data (common

to music applications) by exploring three different learning approaches and their dis-

entangled versions – two of which are novel to this work. Finally, we evaluate all

models against four tasks (training time, similarity retrieval, auto-tagging, and triplet

prediction) and compare various aspects of the learned representations.

5.2.2 Related Work

Metric Learning and Classification

The goal of distance metric learning is to obtain an embedding space where sim-

ilar items are close together and dissimilar items are far apart. A common strategy

is to use pairwise [103, 104] or triplet-based samples to train a model [86, 105–107].

An important advantage of deep metric learning is that it can efficiently model an

extremely large number of classes (e.g., for face recognition) [107]. However, train-

ing models using this strategy are relatively slow as models operate on triplets of in-

put samples [108]. Recently, more efficient sampling techniques have been proposed

to speed up convergence, including hard negative mining, semi-hard negative min-

ing [107], distance weighted sampling [109], and proxy-based training [108]. Proxy-

based training [108] assigns one or several proxies to each class (given by per-class

embedding centroids) and optimizes the learned space by comparing embedded input

samples to proxies instead of directly comparing them to positive and negative sam-

ples. This reduces training time significantly while improving retrieval performance

on images.

Classification models, on the other hand, are typically trained such that classes

are linearly separable in the embedding space of the last hidden layer of the deep

neural network. Since classification models are not optimized based on distances

in the learned embedding space, they may not perform well when directly used for

similarity-based retrieval. To overcome this, recent work proposed the application

82



of a normalization layer over the embedding space during training, and showed that

this simple technique increases model performance on similarity-based image retrieval

[99].

Recent and parallel advances in both paradigms (metric- and classification-based

learning) have shown that there is an inherent link between them [99, 110, 111]. The

per-class embedding centroids used in proxy-based training are, in fact, equivalent to

the per-class vectors obtained from the linear transformation in the last hidden layer

of a classification model [110]. Further, a recent comparative study demonstrated that

the loss function of a triplet-based model is equivalent to that of a classification model

up to a smoothing factor for single-label, multi-class data [110]. These findings sug-

gest that deep metric- and classification-based learning are not as different as initially

thought and we could, potentially, use either to learn a representation that generalizes

well to both similarity-based retrieval and classification tasks.

Disentangled Representation Learning

Another important measure of representation learning is disentanglement [112].

Recently, Lee et al. adapted Conditional Similarity Networks (CSN) applied to triplet-

based deep metric learning to the music domain [11,102]. The main idea in CSN is to

apply a masking function over the embedding space, where each mask corresponds to

a different semantic dimension of similarity corresponding to musical notions such as

genre, mood, instrument and tempo. They showed that the disentangled music repre-

sentation not only enables multidimensional music search via its sub-dimensions, but

also improves general music retrieval performance when all embedding dimensions

are used. However, CSN for disentangled music representation learning was only ex-

plored using a deep metric learning strategy, and classification-based approaches were

not studied. Considering the close relationship between the two, we propose to study

disentanglement under classification, particularly for multi-labeled music data, and

compare and contrast it to disentanglement via metric learning.
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Figure 5.4: A unified framework for disentangled triplet- and proxy-based metric
learning and multi-label classification.

5.2.3 Disentangled Learning Models

In this section, we introduce three disentangled learning methods, which are

triplet-based, proxy-based, and classification-based models. The first model was pre-

viously developed [102], and the latter two are novel contributions. The overall archi-

tectures are illustrated in Figure 5.4. In the following descriptions, x denotes a data

point, f(·) a nonlinear embedding function, y a multi-hot class label, and s a category

(or a similarity notion such as mood, genre or instrumentation) of y. For example, if

yz is rock, then syz is genre.

Triplet-based Model

Disentangled triplet-based models were recently proposed in [11, 102]. We first

define a triplet as t = (xa, xp, xn; yz), where xa is the anchor sample, xp is the positive

sample, and xn is the negative sample. xa and xp are sampled to have the same positive

label yz, while xn is negative for yz. Then, the basic triplet loss is defined as

L(t) = max{0, D(f(xa), f(xn))�D(f(xa), f(xp)) +�}, (5.6)

where D(f(xi), f(xj)) = cos(f(xi), f(xj)) is a distance metric, and � is a margin
value [106]. To disentangle the embedding feature of size d, a masking function ms 2
Rd is applied. The number of masks corresponds to the number of similarity notions
s and each mask occupies certain dimensions of the Rd space evenly as illustrated in
Figure 5.4 (a). Thus, when the t = (xa, xp, xn; yz) is used, a mask for the similarity
notion syz is applied to the embedding feature space. The loss for training the model
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is given by:

L(t) = max{0, D(f(xa) �ms, f(xn) �ms)

�D(f(xa) �ms, f(xp) �ms) +�},
(5.7)

where � denotes the Hadamard product.

Proxy-based Model

The core idea of proxy-based metric learning is that proxy embeddings are learned
and assigned to each class and used to measure the distance to an anchor data point
instead of directly measuring distances to pairs or triplet data samples [108]. This can
be interpreted as a supervised clustering algorithm, where proxies play a role of class
centroids. In this approach, the distance metric becomes

D(f(xi), pyz) = cos(f(xi), pyz) =
f(xi)

||f(xi)||
· pyz
||pyz ||

, (5.8)

where xi is a data point, pyz is a proxy for class yz, and · is the dot product. If the data
is single-labeled (multi-class), one can apply triplet loss, Neighborhood Component
Analysis (NCA) loss [113], or Softmax loss over the above distance metric [108,110],
but with our multi-labeled data, it is not directly applicable. To address this, we re-
place these losses with a multi-label classification loss, i.e., binary cross entropy. The
prediction score for each class becomes

ŷz = sigmoid(D(f(xi), pyz)), (5.9)

and the loss is

L(xi) =
X

z

[�yzlog(ŷz)� (1� yz)log(1� ŷz)]. (5.10)

However, from our preliminary experiments, we found that the sigmoid function with
cosine similarity score causes numerical problem in optimization. We speculate that
the reason for this is that the cosine similarity score (bounded between -1 to +1) only
activates the linear regions of the downstream sigmoid activation, reducing model
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capacity.1 Therefore, we modify the distance metric to be

D(f(xi), pyz) =
f(xi)

||f(xi)||
· pyz , (5.11)

to ensure that both the learned embedding space is normalized and the sigmoid acti-
vations can have nonlinear properties.

From this basic multi-label proxy-based model, we expand the model by apply-
ing the masking function as used in the disentangled triplet-based model. Then, the
prediction score for each class is updated to

ŷz = sigmoid(D(f(xi) �ms, pyz �ms)), (5.12)

as illustrated in Figure 5.4 (b).

Classification-based Model

Classification-based metric learning has recently been explored [99, 110]. The
core idea is to apply a normalization layer on the embedding feature space. This
simple technique ensures that the learned representation has unit length and makes
similarity-based retrieval more effective compared to the vanilla classification model.
Therefore, the prediction score of classification-based metric learning model for each
class is

ŷz = sigmoid(
f(xi)

||f(xi)||
· cyz), (5.13)

where cyz is a centroid for each class (parameters of the last hidden layer).2 At this
stage, we observe that the distance metric inside the sigmoid function of Equation
5.13 is equivalent to that of our modified distance metric in Equation 5.11 of the
proxy-based model.

As for triplet-based metric learning, we extend classification-based metric learn-
ing to learn a disentangled embedding space. We begin from the disentangled distance

1In proxy-triplet loss, this type of numerical problem does not occur because they are relative com-
parison based losses. In proxy-NCA or proxy-Softmax loss, some of the previous works encoun-
tered similar problem, and solved the problem by applying a smoothing factor over the similarity
score [99, 110, 114]. We also tested applying a smoothing factor, but for our multi-label classifica-
tion problem, it turns out that the proposed modified distance metric is more effective.

2In our preliminary experiments, we found that removing the bias term does not decrease the model
performance, so we did not include it in Equation 5.13.
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metric, which is

D(f(xi) �ms, cyz �ms) =
f(xi) �ms

||f(xi) �ms||
· (cyz �ms)

=
1

||f(xi) �ms||
· (f(xi) �ms) · (ms � cyz).

(5.14)

From the above equation, if we split f(xi) into the nonlinear function fn�1(xi) and
the embedding feature layer h (here, h layer includes nonlinear activation), then the
equation becomes

=
1

||f(xi) �ms||
· (fn�1(xi) · h �ms) · (ms � cyz)

=
1

||f(xi) �ms||
· fn�1(xi) · h �ms ·ms � cyz .

(5.15)

In this equation, (h � ms · ms�) is actually a sub-dense layer that has the same di-
mensionality as the disjoint mask ms, which is applied when yz 2 s. Henceforth, we
denote the sub-dense layer hs. Now, ||f(xi) �ms|| can be replaced to ||fn�1(xi) · hs||.
Finally, the disentangled distance metric becomes

=
1

||fn�1(xi) · hs||
· (fn�1(xi) · hs) · cyz . (5.16)

This is the same formula for multi-task learning in the multi-label classification prob-
lem formulation, surprisingly, proving a previously unknown link between the two
concepts. We illustrate this disentangled classification-based model in Figure 5.4 (c).
Through experimental evaluation, we further verify that this multi-task learning-based
classification model is equivalent to the disentangled proxy-based model while being
much simpler to implement and benchmark.

5.2.4 Experiments

Dataset and Input Features

For our experiments, we use the Million Song Dataset (MSD) [36] and Last.FM
tag annotations associated with MSD tracks, which have been previously grouped
into different categories [31], resulting in 28 genre tags, 12 mood tags, 5 instrument
tags, and 5 era tags. We treat each category as a similarity notion s. We use these
tags for evaluating similarity-based retrieval, auto-tagging, and triplet prediction tasks.
The data are split into 201680, 11774, and 28435 samples for the train, validation,
and test sets, respectively, following a previous auto-tagging benchmark [27]. For
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triplet prediction evaluation, we follow the same procedure as in [102], albeit switch
one similarity notion (era replaces tempo) to match auto-tagging benchmarks. We
sample 40,000 triplets per each similarity notion (genre, mood, instruments, era, track)
and use a cleaned version of the dim-sim dataset to evaluate the models on human-
annotated triplets.

The input to the embedding function f(·) is 3-second excerpts represented as a
log-scaled mel-spectrogram S, extracted with librosa [92]. We use a window size of 23
ms with 50% overlap and 128 mel-bands, resulting in input dimensions of 129⇥128 as
in [102]. The input features are z-scored standardized using fixed mean and standard
deviation values of 0.2 and 0.25, respectively.

Backbone Model and Training Parameters

For the embedding function or backbone model f(·), we use the same architec-
ture as described in [102], which is an Inception-based model [95]. The model is
comprised of a convolution layer with 5⇥ 5 sized 64 filters followed by 2⇥ 2 strided
max-pooling, followed by six Inception blocks. Each Inception block consist of two
Inception modules, a naı̈ve module and dimension reduction module, which are ap-
plied in sequence. Both of the modules include filters of mixed size, but the naı̈ve

module has 2⇥ 2 strides in the last convolution layers of the module, so that the spa-
tial feature map is reduced, and the dimension reduction module has a fixed number
of filters in the last convolution layers of the module, so that the feature map is fixed
to 256 in the intermediate layers. At the end, one fully connected layer with 256 units
is added, except for the disentangled (multi-task learning) classification-based model,
which uses sub-dense layers instead of a single fully connected layer. We use ReLU
nonlinearities for all layers.

Since our embedding dimensionality is 256 and we consider four music similarity
notions (genre, mood, instruments, era), each has a disjoint subspace of size 64. For
the disentangled (multi-task learning) classification-based model, the sub-dense layers
are also 64 units each. We use the Adam optimizer [96] for training. We initialize the
learning rate to 0.005 and reduce it by a factor of 5 when the validation loss does
not decrease for 10 epochs, up to 5 times, after which we apply early stopping. The
margin for the triplet-based models is set to 0.1.
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Models Normalization Disentanglement
Training time Similarity-based retrieval Auto-tagging

ratio R@1 R@2 R@4 R@8 AUC

Triplet 1.87 31.8 45.2 59.9 73.0 0.815
Triplet 2.37 36.5 50.5 64.1 76.0 0.825

Triplet + track reg. 3.05 33.9 47.5 61.9 74.3 0.813
Proxy 1.11 45.0 58.5 71.0 80.9 0.890
Proxy 1.29 44.7 58.2 70.7 80.6 0.890

Classification 1.00 6.1 11.5 21.1 35.9 0.887
Classification 1.00 43.8 57.8 70.3 80.3 0.887
Classification 1.27 44.7 58.4 70.7 80.9 0.890

Table 5.3: Results for training time, similarity search, and auto-tagging.

Model AUC

CRNN [31] 0.850
Self-attention [115] 0.881

Sample-level ReSE-2 [93] 0.885
Multi-level & multi-scale [27] 0.888

Proposed Model 0.890

Table 5.4: Auto-tagging SOTA comparison.

Evaluation Tasks

Our learned representations can be utilized for many applications, so there are
many aspects to consider when evaluating representation learning models. Therefore,
as a unified evaluation framework, we evaluate the models on four tasks: training time,
similarity-based retrieval, auto-tagging, and triplet prediction.

Training Time

We first measure the overall training time to see the efficiency of the represen-
tation learning model. The training time is calculated as the total number of epochs
multiplied by the time consumption of 1 epoch. Then, we report the value as a ratio
to the shortest training time.
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Similarity-based Retrieval

For the similarity-based retrieval evaluation, we use the recall@K (R@K) met-
ric to measure retrieval quality following the standard evaluation setting in image re-
trieval [99,108–110,116]. This metric is useful for evaluating a search system because
it measures the quality of the top K retrieved results, which are more important than
long-tail retrieved results. The definition of the standard recall@K that is used for
single-label problems is as follows. A query song is used to search a test set of record-
ings and retrieve similar sounding results. If one of the top K retrieved results has the
same class label as the query song, the recall@K is set to 1, otherwise it is set to 0.
This process is repeated for all samples in the test set and then averaged.

Our data is multi-labeled, however, so we adapt the standard single-label (multi-
class) R@K metric to create a multi-label variant. Our definition is

R@K =
1

N

NX

q=1

n(yq \ ([K

i=1y
i))

n(yq)
, (5.17)

where N is the number of test samples, yq is the ground truth labels of a query, and y
i

is the ground truth labels of the top K retrieved results. And, n(·) denotes the number
of the elements of a set. In this setup, if the set of labels of the top K retrieved results
contains all the multiple labels of the query song, the recall@K is set to 1, otherwise
it is set to the correct answer ratio. We report R@K when K is 1, 2, 4, and 8.

Auto-tagging

Music auto-tagging has been extensively studied in the literature with diverse
model architectures [98]. As such, we follow standard benchmarking and evaluation
criteria, and report area under the receiver-operator curve (AUC) to measure tag-based
retrieval performance.

Unlike the proxy-based and classification-based approaches, the triplet-based
model doesn’t directly predict a class (or several classes) for a given input. Thus,
we use the concept of prototypes to obtain classification result from the triplet-based
models [13]. We first average all the embedding features of the training samples that
are assigned to each class label to construct prototype (or centroid) of each class label.
Then, we measure a distance between these prototypes and embedding feature of each
sample and regard it as a prediction score for classification, which itself is directly
used for AUC evaluation.
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Embedding space Models Normalization Disentanglement Genre Mood Instruments Era Overall

Complete space

Triplet 0.771 0.725 0.653 0.701 0.712
Triplet 0.762 0.744 0.696 0.733 0.733

Triplet + track reg. 0.757 0.733 0.673 0.715 0.720
Proxy 0.774 0.742 0.645 0.693 0.714
Proxy 0.762 0.742 0.660 0.716 0.720

Classification 0.783 0.745 0.659 0.723 0.728
Classification 0.776 0.747 0.647 0.704 0.719
Classification 0.758 0.742 0.659 0.715 0.719

Sub-space

Triplet 0.790 0.785 0.798 0.797 0.792
Triplet track reg. 0.775 0.748 0.743 0.742 0.752

Proxy 0.777 0.740 0.734 0.700 0.738
Classification 0.775 0.739 0.732 0.701 0.737

Table 5.5: Results on tag-based triplets.

Models Normalization Disentanglement Track Human-labeled

Triplet 0.957 0.820
Triplet 0.964 0.820

Triplet + track reg. 0.961 0.852
Proxy 0.978 0.784
Proxy 0.978 0.791

Classification 0.978 0.780
Classification 0.978 0.795
Classification 0.984 0.801

Table 5.6: Results on track-based & human-labeled triplets.

Triplet Prediction

Triplet prediction score is simply measured by counting the number of correct
predictions among all test triplets. Here, it is regarded as correct if the distance be-
tween the embedding features of the anchor and the positive is smaller than that of the
distance between the anchor and the negative.

5.2.5 Results

In Table 5.3, we present the results for training time, similarity-based retrieval,
and auto-tagging. We compare a total of eight models, which are categorized into three
learning methods: triplet-based, proxy-based, and classification-based models. “Dis-
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entanglement” indicates whether a CSN masking function is applied to each learning
method, and “Normalization” indicates whether a normalization layer is applied to
the model’s embedding layer. “Track regularization” (track reg.) indicates whether, in
addition to tag-based triplets, we also sample triplets by taking the anchor and positive
from the same track and the negative from a different track, as proposed in [102].

First, we see that the training time, represented as the ratio between each model’s
training time and the training time of the fastest approach, is significantly reduced for
the proxy-based and classification-based models compared to the triplet-based models.
This is because each training sample for the triplet model is actually composed of
3 inputs (anchor, positive and negative) or even 5 when track regularization is also
applied, whereas the proxy-based and classification-based approaches only require
one input per training sample.

Second, for similarity-based retrieval, we see that the vanilla classification model
without a normalization layer exhibits poor performance. This confirms our conjec-
ture that using the representation learned by the classification model without normal-
ization layer directly is not optimal for similarity-based retrieval, as the model is not
optimized based on distances in the learned embedding space. We also see that the
proxy- and classification-based models are superior to the triplet-based models across
the board. We hypothesize that this is due to the latter strategy using only a single la-
bel per training sample, whereas the former two use all (multi-)labels for each training
sample, thus exploiting a richer signal during training.

Third, for auto-tagging, we see that the proxy-based and classification-based
models outperform the triplet-based model by a large margin. As expected, the vanilla
classification-based model performs well on this task. In Table 5.4, we compare our
proposed classification-based disentangled model to the state of the art (SOTA) for
music auto-tagging. Our model outperforms all baselines, setting the new state-of-
the-art for music auto-tagging.

Fourth, for triplet prediction, we report tag-based triplet results in Table 5.5 using
different similarity dimensions (genre, mood, instruments, era), and in Table 5.6 the
results for track-based and human-labeled triplets. The “Embedding space” column
indicates whether we use the complete embedding space to measure the similarity
between pairs of examples, or whether we only use the disjoint sub-space (f(xi) ·ms

or hs) corresponding to the similarity notion s used to sample the test triplets (genre,
mood, instruments or era). In Table 5.6 we use the complete space.

Fifth, in Table 5.5 we see that while proxy- and classification-based embeddings
are superior for music retrieval and tagging, triplet-based embeddings perform better
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(unsurprisingly) on the triplet-prediction task. It is noteworthy that while the triplet
task is often used as a proxy for evaluating music similarity modelling, models that do
best on this task are not necessarily the best at downstream retrieval tasks as evidenced
by Table 5.3. In Table 5.6, we also see that while classification-based embeddings
perform better at predicting track-based triplet similarity, triplet-based embeddings
perform better when it comes to matching human judgements of triplet similarity.
This is particularly true when we apply triplet learning with track regularization, in
accordance with previous work [102].

5.2.6 Visualization of Disentangled Space

Figure 5.5: t-SNE plot of test set embedding features. The blue dots are labeled posi-
tive for the female vocalists tag, the red dots are labeled positive for the instrumental
tag, and the green dots are negative.

To qualitatively evaluate the disentangled representation space learned by our
model, we visualize the embeddings of the test set as a t-SNE plot [117] in Figure
5.5. We take embeddings from the disentangled triplet model and highlight samples
with the female vocalists and instrumental tags as an example. While the highlighted
samples are relatively dispersed when considering all dimensions, we see that they
are nicely clustered together when only considering the instrument sub-space of the
embedding. This illustrates the benefits of a disentangled space, which supports both
global similarity and specialized similarity over specific music dimensions.
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5.2.7 Contribution Summary

In this paper, we presented a detailed study of metric-based and classification-
based learning approaches for music representation learning. We extended both strate-
gies to learn disentangled spaces from multi-label data, and showed both analytically
and empirically that under certain conditions, proxy-based learning is equivalent to
classification-based learning. We benchmark multiple variants of each strategy in
terms of training efficiency and performance on music retrieval, auto-tagging, and
triplet prediction tasks. Our results show that, when coupled with disentanglement and
normalization, classification-based representation learning produces superior bench-
mark results on all tasks, except for triplet prediction where triplet models are (pre-
dictably) strong performers, indicating that triplet prediction is not necessarily a re-
liable proxy for real-world retrieval performance. Our best performing disentangled
model obtains state-of-the-art results for music auto-tagging, outperforming all pre-
vious baselines. Finally, we complement our quantitative analysis with qualitative
results that further illustrate the benefits of learning a disentangled music embedding
space.
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Chapter 6. Conclusions

In this chapter, I will provide a summary of research contributions and practical
ways of utilizing similarity-based deep learning for music retrieval. In addition, future
work will be introduced.

6.1 Summary

We have explored and presented various individual modules of content-based
music retrieval system. A content-based music retrieval system is mainly composed
of three modules which are an audio embedding model, groundtruth labels, and train-
ing methods. Throughout this thesis, we proposed new methods for each of module
and further extended the conventional content-based music retrieval scenarios to mul-
tidimensional music retrieval case.

In chapter 3, we presented sample-level deep convolutional neural networks using
raw waveforms. This model is useful in efficiency, when the data storage is limited,
because the model directly takes raw waveforms compared to mel-spectrogram based
approaches, and we found that downsampling music audio down to 8000 Hz does not
significantly degrade performance but it saves training time. Also, we visualized the
spectrum of the learned filters for each sampling rate and found that the SampleCNN
model is actively focusing on (or zoom in on) important low-frequency bands.

In chapter 4, we investigated the usefulness of artist label as a groundtruth la-
bel to train similarity-based deep learning model. Traditionally, such metric learning
methods are trained with semantic labels such as tags. In this work, we compared
artist-label model and tag-label model, and verified that the artist-label model is as
useful as tag-label model. This suggests that free and objective metadata such as artist
label is as useful as expensive tag annotations.

In chapter 5, we investigated disentangled metric learning methods and opens
an application of multidimensional music retrieval. The results show that tag-based
metric learning model with track regularization, that is merging different specificity
level of information helps in building general music similarity space. In addition,
we connect the relationship between metric learning and classification. By doing so
we verified that the traditional classification model with simple normalization layer,
we can build even stronger similarity space than the conventional triplet-based metric
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learning approach.
Through the exploration of this thesis, I hope we will be able to develop a better

content-based music search system.

6.2 Future Work

Future work will be largely in three directions: an advanced model methodology,
active learning, and exploration of human music similarity.

Figure 6.1: Future work.

First, an advanced model will be explored. We have mostly explored metric
learning and classification for music search system using semantic tags and objective
metadata of music. If more similarity notions that can be added in training phase, then
the model can have more diverse characteristics of different similarity notions and if
it is merged with multidimensional search application, we can search for music with
more similarity notions. Therefore, we plan to add Music Information Retrieval (MIR)
features as an additional similarity notion such as energy or the number of onsets.

Second, active learning for search will be explored. Search is not a one-shot ex-
perience, we search for items repeatedly until we find satisfactory results. And, active
learning can provide adaptive search experience to each user. This is relatively an
unexplored area in MIR community and I think we can compensate a disadvantage of
content-based music search system compared to recommendation system by applying
active learning methods, which is music search reflecting the characteristics of each
user.

Third, deep understanding of human music similarity can give great insight into
the development of similarity-based music search systems. There is not much work on
large-scale, data-driven understanding of human music similarity in MIR community,
and if we perform this study, and find several types of music similarity, then we can
develop more satisfactory system. The insights gained from this kind of study will be
of great help in setting future research direction.
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